The chemical bath deposition technique (CBD) is considered the cheapest and easiest compared with other deposition techniques. However, it is highly sensitive to effective parameter deposition values such as pH, temperature, and so on. The pH value of the reaction solution has a direct impact on both the nucleation and growth rate of the film. Consequently, this study presents a novel investigation into the effect of a precise change. in the pH reaction solution value on the structural, morphological, and photoresponse characteristics of tin monosulphide (SnS) films. The films were grown on a flexible polyester substrate with pH values of 7.1, 7.4, and 7.7. The X-ray diffraction patterns of the grown films at pH 7.1 and 7.4 confirmed their polycrystalline nature. Additionally, an observed alteration in the crystal structure occurred as the pH value increased from 7.1 to 7.4, resulting in a transition from an orthorhombic crystal structure to a cubic crystal structure. In contrast, the XRD pattern of the grown film at pH 7.7 revealed that it was amorphous. The field-emission scanning electron microscopy images revealed a flower-like morphology for the grown film at 7.1, whereas the grown films at 7.4 and 7.7 revealed a grain morphology. The results also showed that the pH values were also having an important effect on the energy gap value (Eg ) of films; the Eg values were 1.46, 1.57, and 1.65 eV for pH 7.1, 7.4, and 7.7, respectively. The photodetectors fabricated using grown films exhibited excellent photoresponse characteristics. when subjected to near-infrared (750 nm) illumination. It was also demonstrated that the photodetector using. the cubic structure film possessed faster response times and greater sensitivity than the photodetector using the orthorhombic structure film.
Abstract: Tin oxide thin films were deposited by direct current (DC) reactive sputtering at gas pressures of 0.015 mbar – 0.15 mbar. The crystalline structure and surface morphology of the prepared SnO2 films were introduced by X-ray diffraction (XRD) and atomic force microscopy (AFM). These films showed preferred orientation in the (110) plane. Due to AFM micrographs, the grain size increased non-uniformly as the working gas pressure increased.
The aim of the research is to measure the change in the impact of the factors of the Corona pandemic on psychological sensitivity and COVID-19 phobia in a sample of Bisha University students and to detect the differences in the phobia (phobia) Covid-19 among the sample members in the measurement before the ban and after the ban was opened, in addition to the differences in psychological sensitivity of The sample has between sizes before and after the spread of the Corona pandemic, as well as the differences in them according to the gender variable (male, female). The researcher relied on the comparative approach. The scale of psychological sensitivity and COVID-19 phobia was applied to a sample of (62) male and female respondents.
... Show MoreABSTRACT: Thin film of CdS has been deposited onto clean glass substrate by using Spray pyrolysis technique. Results of Morphological (AFM) studied; electrical properties and optical conductivity studied are analysis. AFM results show a crystalline nature of the films. From the conductivity measurement at different temperatures, the activation energy of the films was calculated and found to be between 0.188 - 0.124 eV for low temperature regions, and between 1.67-1.19eV for high temperature regions. Hall measurements of electrical properties at room temperature show that the resistivity and mobility of CdS polycrystalline films deposited at 400 C0, were 3.878x103 . cm and 1.302x104cm2/ (V.s), respectively. The electrical conductivity of th
... Show MoreThe effect of 0.66 µeV gamma radiation on the structural and optical properties of the CdTe thin films prepared by thermal evaporation at thickness 350nm, The samples were irradiated with time (50 h and 79h) at room temperature. The absorption spectra for all the samples were recorded using UV-VIS spectrometer in order to calculate the energy gap, refractive index and others parameter . The optical energy gap was found decrease from (1.9 to 1.67) eV.
in this paper, the current work was devoted to the manufacture of TiO2 nanoparticles doped with manganese, synthesis by the sol-gel technique using a dip-conting device, for their hydrophilic properties and photocatalytic activity, and the products were characterized by X-ray diffraction, scanning electron microscopy, and Uv-Visible absorption, and the results XRD showed an phase Anatase , and the results of the SEM Explained the shape of the morphology of the samples after the doping process compared with pure TiO2, and the results of a shift in light absorption from ultraviolet rays to visible light were evident. The results showed that the thin films have a high wettability under visible rays
... Show More