The chemical bath deposition technique (CBD) is considered the cheapest and easiest compared with other deposition techniques. However, it is highly sensitive to effective parameter deposition values such as pH, temperature, and so on. The pH value of the reaction solution has a direct impact on both the nucleation and growth rate of the film. Consequently, this study presents a novel investigation into the effect of a precise change. in the pH reaction solution value on the structural, morphological, and photoresponse characteristics of tin monosulphide (SnS) films. The films were grown on a flexible polyester substrate with pH values of 7.1, 7.4, and 7.7. The X-ray diffraction patterns of the grown films at pH 7.1 and 7.4 confirmed their polycrystalline nature. Additionally, an observed alteration in the crystal structure occurred as the pH value increased from 7.1 to 7.4, resulting in a transition from an orthorhombic crystal structure to a cubic crystal structure. In contrast, the XRD pattern of the grown film at pH 7.7 revealed that it was amorphous. The field-emission scanning electron microscopy images revealed a flower-like morphology for the grown film at 7.1, whereas the grown films at 7.4 and 7.7 revealed a grain morphology. The results also showed that the pH values were also having an important effect on the energy gap value (Eg ) of films; the Eg values were 1.46, 1.57, and 1.65 eV for pH 7.1, 7.4, and 7.7, respectively. The photodetectors fabricated using grown films exhibited excellent photoresponse characteristics. when subjected to near-infrared (750 nm) illumination. It was also demonstrated that the photodetector using. the cubic structure film possessed faster response times and greater sensitivity than the photodetector using the orthorhombic structure film.
Porous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O
ABSRTACT Background: Soft liner material is become important in dental prosthetic treatment. They are applied to the surface of the dentures to achieve more equal force distribution , reduce localized pressure and improve denture retention by engaging undercut . So the aim of the study is to evaluate the effect of different surface treatment by air-abrasion AL2O3 and laser treatment with CO2 laser on improving the shear bond strength of the denture liner to acrylic denture base material . Materials and methods: the 30 specimens of heat cured acrylic denture base material (high Impact acrylic )and heat cured soft liner (Vertex ,Nether Lands )were prepared for this study .They were designed and divided according to type of the s
... Show MoreEMS in accordance with ISO 14001: 2015 is considered an entry point to reduce environmental impacts, especially the effects resulting from the oil industry, which is the main source of environmental pollution and waste of natural resources, since the second revision of the standard took place in September 2015. The problem of the research was manifested in the weakness in understanding the correct guidelines that must be followed in order to obtain and maintain the standard. The purpose of this research was to give a general picture of what is behind ISO14001:2015 and how it is possible to create a comprehensive base for understanding its application by seeking the gap between the actually achieved reality, standards requirements
... Show MoreIn this paper the chain length of a space of fuzzy orderings is defined, and various properties of this invariant are proved. The structure theorem for spaces of finite chain length is proved. Spaces of Fuzzy Orderings Throughout X = (X,A) denoted a space of fuzzy orderings. That is, A is a fuzzy subgroup of abelian group G of exponent 2. (see [1] (i.e. x 2 = 1,  x  G), and X is a (non empty) fuzzy subset of the character group ï£ (A) = Hom(A,{1,–1}) satisfying: 1. X is a fuzzy closed subset of ï£ (A). 2.  an element e  A such that ï³(e) = – 1  ï³ ïƒŽ X. 3. Xïž :={a  A\ ï³(a) = 1  ï³ ïƒŽ X} = 1. 4. If f and g are forms over A and if x  D(
... Show MoreMeasurements of Hall effect properties at different of annealing temperature have been made on polycrystalline Pb0.55S0.45 films were prepared at room temperature by thermal evaporation technique under high vacuum 4*10-5 torr . The thickness of the film was 2?m .The carrier concentration (n) was observed to decrease with increasing the annealing temperature. The Hall measurements showed that the charge carriers are electrons (i.e n-type conduction). From the observed dependence on the temperature, it is found that the Hall mobility (µH), drift velocity ( d) carrier life time ( ), mean free path (?) were increased with increasing annealing temperature
Thin films of CdS:Cu were deposited onto glass substrate temperature 400 °c. The optieal properties have been studied for Cds doped with (1,3, 8) wt% of Cu before and after Gamma irradiation. It was found that the irradiation caused an ( Frenkel defects) where the atom is displaced from its original site leaving vacancy and forming on interstitial atom. It was found the irradiation caused an absorption edge shifting towards long wavelength as a result of the increasing of Cu concentration.
Results of a study of alloys and films with various Pb content have been reported and discussed. Films of of thickness 1.5
Zinc oxide (ZnO) nanostructures were synthesized through the hydrothermal method at various conditions growth times (6,7 and 8 hrs.) and a growth temperature (70, 90, and 100 ºC). The prepared ZnO nanostructure samples were described using scanning electron microscopy (SEM) and X-ray diffractometer to distinguish their surface morphologies and crystal structures. The ZnO samples were confirmed to have the same crystal type, with different densities and dimensions (diameter and length). The obtained ZnO nanostructures were used to manufacture gas sensors for NO2 gas detection. Sensing characteristics for the fabricated sensor to NO2 gas were examined at different operating temperatures (180, 200, 220, and 240) ºC with a low gas concentrati
... Show MoreTh paper scientifically deals with the Syrian crisis events erupted in 2011 using the historical descriptive and analytical approaches. The importance of the paper comes from the serious crisis that occurred in a region rich of historical crises, and natural resources attracting the attention of the major countries. The paper aims to show the Syrian crisis, its importance to Russia, the United States, and the regional countries, its impact on Russia economically and politically after the intervention, and Russia’s achievements on a global level holding the influential power on international decisions and other global events. The new Russian strategy has proven its worth in preserving its strategic interests as it could help the Syrian
... Show More