The Na Bop-Pu Sap Pb-Zn ore bodies represent a typical vein-type lead-zinc deposit situated in the Cho Don area and are currently being extracted for their lead and zinc resources. This deposit is characterized by its significant scale and quality and is considered one of the prominent lead-zinc deposits in the Cho Don area. Despite its significance, this deposit has not received adequate attention, resulting in limited knowledge of its geology, mineralization, and deposit genesis model. To address this knowledge gap, our study utilized several methodologies, including field surveying, ore mineral analysis under a microscope, and S and Pb isotopic geochemistry. By employing these approaches, we were able to obtain specific insights into the origin of mineralization and the deposit model. Our field survey suggests that the ore deposits are formed as Pb-Zn-bearing veins along Devonian shale, claystone, and limestone faults. Microscopic analyses of the veins reveal the presence of galena, sphalerite, chalcopyrite, pyrite, arsenopyrite, and pyrrhotite as ore minerals, and quartz, calcite, dolomite, and chalcedony as gangue minerals. Sulfur-isotope values (δ34SCDT) of galena 5.3 to 0.1‰ (average 2.8‰), sphalerite 6.8 to 2.5‰ (average 5.3‰), and pyrite 5.8 to 4.1‰ (average 4.9‰) indicate that the sulfide mineralization may be related to a deep source, possibly originating from magmatic activity in the region and contaminated by carbonate-bearing marine sedimentary rocks. Lead-isotope studies indicate a model age of 598-424 Ma for the lead reservoir, consistent with the possible presence of local source rocks containing sulfur. The lead and sulfur in the ore veins were probably contaminated by Devonian carbonate-bearing marine sedimentary rocks and leached from Neoproterozoic to Cambrian magmatic activity. The lead-zinc deposits in Na Bop-Pu Sap do not display any Mississippi valley-type (MVT) or Sedimentary exhalative (SEDEX) lead-zinc deposit characteristics, as they appear to be related to shear zone-hosted lead-zinc deposits.
An experimental analysis was included to study and investigate the mass transport behavior of cupric ions reduction as the main reaction in the presence of 0.5M H2SO4 by weight difference technique (WDT). The experiments were carried out by electrochemical cell with a rotating cylinder electrode as cathode. The impacts of different operating conditions on mass transfer coefficient were analyzed such as rotation speeds 100-500 rpm, electrolyte temperatures 30-60 , and cupric ions concentration 250-750 ppm. The order of copper reduction reaction was investigated and it shows a first order reaction behavior. The mass transfer coefficient for the described system was correlated with the aid of dimensionless groups as fo
... Show MoreUltrasound has been used as a diagnostic modality for many intraocular diseases, due its safety, low cost, real time and wide availability. Unfortunately, ultrasound images suffer from speckle artifact that are tissue dependent. In this work, we will offer a method to reduce speckle noise and improve ultrasound image to raise the human diagnostic performance. This method combined undecimated wavelet transform with a wavelet coefficient mapping function: where UDWT used to eliminate the noise and a wavelet coefficient mapping function used to enhance the contrast of denoised images obtained from the first component. This methods can be used not only as a means for improving visual quality of medical images but also as a preprocessing
... Show MoreAbstract
This work deals with a numerical investigation to evaluate the utilization of a water pipe buried inside a roof to reduce the heat gain and minimize the transmission of heat energy inside the conditioning space in summer season. The numerical results of this paper showed that the reduction in heat gain and energy saving could be occurred with specific values of parameters, like the number of pipes per square meter, the ratio of pipe diameter to the roof thickness, and the pipe inlet water temperature. Comparing with a normal roof (without pipes), the results indicated a significant reduction in energy heat gain which is about 37.8% when the number of pipes per m
... Show MorePharmaceutical-instigated pollution is a major concern, especially in relation to aquatic environments and drugs such as meropenem antibiotics. Adsorbents, such as multi-walled carbon nanotubes, offer potential as means of removing polluting meropenem antibiotics and other similar compounds from water. In order to evaluate the effectiveness of multi-walled carbon nanotubes in this capacity, various experimental parameters, including contact time, initial concentration, pH, temperature and the dose of adsorbent have been investigated. The Langmuir and the Freundlich isotherm models have been used. The data obtained using a modified Langmuir model have been consistent with the experimental ones; the best pH value has been obtained to have the
... Show MoreA set of hydro treating experiments are carried out on vacuum gas oil in a trickle bed reactor to study the hydrodesulfurization and hydrodenitrogenation based on two model compounds, carbazole (non-basic nitrogen compound) and acridine (basic nitrogen compound), which are added at 0–200 ppm to the tested oil, and dibenzotiophene is used as a sulfur model compound at 3,000 ppm over commercial CoMo/ Al2O3 and prepared PtMo/Al2O3. The impregnation method is used to prepare (0.5% Pt) PtMo/Al2O3. The basic sites are found to be very small, and the two catalysts exhibit good metal support interaction. In the absence of nitrogen compounds over the tested catalysts in the trickle bed reactor at temperatures of 523 to 573 K, liquid hourly space v
... Show MoreZinc Oxide (ZnO) is considered as one of the best materials already used as a window layer in solar cells due to its antireflective capability. The ZnO/MgF2 bilayer thin film is more efficient as antireflective coating. In this work, ZnO and ZnO/MgF2 thin films were deposited on glass substrate using pulsed laser deposition and thermal evaporation deposition methods. The optical measurements indicated that ZnO thin layer has an energy gap of (3.02 eV) while ZnO/MgF2 bilayer gives rise to an increase in the energy gap. ZnO/MgF2 bilayer shows a high energy gap (3.77 eV) with low reflectance (1.1-10 %) and refractive index (1.9) leading to high transmittance, this bilayer could be a good candidate optical material to improve the performance
... Show More