Preferred Language
Articles
/
DxenW5IBVTCNdQwC2K3g
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, comes in second place with a gross ratio of 91%. Furthermore, Bayesian ridge (BR), linear regressor (LR), and stochastic gradient descent (SGD), with mean square error and with accuracy ratios of 84.365%, 84.363%, and 79%. As a result, the performance precision of these regression models yields. The interaction framework was designed to be a straightforward tool for working with this paradigm. This model is a valuable tool for establishing strategies to counter the swiftness of climate change in the area under study.</span>

Scopus Crossref
View Publication
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Emotional Intelligence and Leadership Personality for Managers
...Show More Authors

The purpose of this research is to analyze the relationship between the emotional intelligence and the leadership personality of the managers . the research was tested at the college of administration and economics – university of Baghdad through applying it on a sample of (67) members and units of the college. a questionnaire was used as a major tool for collecting data and information . for the purpose of researching to conclusion, the research aimed to test two main hypotheses related to the correlation coefficient and the effect correlation between the two main variable of the research, some statistical techniques such as (the mean, student deviation, percentages, correlation coefficient spearman, simple regression) were us

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 30 2024
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Reservoir permeability prediction based artificial intelligence techniques
...Show More Authors

   Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Tue Aug 15 2023
Journal Name
Al-academy
Applications of Artificial Intelligence in Graphic Design
...Show More Authors

If the Industrial Revolution has enabled the replacement of humans with machines, the digital revolution is moving towards replacing our brains with artificial intelligence, so it is necessary to consider how this radical transformation affects the graphic design ecosystem. Hence, the research problem emerged (what are the effects of artificial intelligence on graphic design) and the research aimed to know the capabilities and effects of artificial intelligence applications in graphic design, and the study dealt in its theoretical framework with two main axes, the first is the concept of artificial intelligence, and the second is artificial intelligence applications in graphic design. The descriptive approach adopted a method of content

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Nonparametric Binary Logistic Regression
...Show More Authors

In this research, the methods of Kernel estimator (nonparametric density estimator) were relied upon in estimating the two-response logistic regression, where the comparison was used between the method of Nadaraya-Watson and the method of Local Scoring algorithm, and optimal Smoothing parameter λ was estimated by the methods of Cross-validation and generalized Cross-validation, bandwidth optimal λ has a clear effect in the estimation process. It also has a key role in smoothing the curve as it approaches the real curve, and the goal of using the Kernel estimator is to modify the observations so that we can obtain estimators with characteristics close to the properties of real parameters, and based on medical data for patients with chro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 20 2019
Journal Name
Baghdad Science Journal
Taxonomy of Memory Usage in Swarm Intelligence-Based Metaheuristics
...Show More Authors

Metaheuristics under the swarm intelligence (SI) class have proven to be efficient and have become popular methods for solving different optimization problems. Based on the usage of memory, metaheuristics can be classified into algorithms with memory and without memory (memory-less). The absence of memory in some metaheuristics will lead to the loss of the information gained in previous iterations. The metaheuristics tend to divert from promising areas of solutions search spaces which will lead to non-optimal solutions. This paper aims to review memory usage and its effect on the performance of the main SI-based metaheuristics. Investigation has been performed on SI metaheuristics, memory usage and memory-less metaheuristics, memory char

... Show More
View Publication Preview PDF
Crossref (3)
Clarivate Crossref
Publication Date
Wed Nov 27 2024
Journal Name
Frontiers In Education
The impact of using artificial intelligence techniques in improving the quality of educational services/case study at the University of Baghdad
...Show More Authors

The utilization of artificial intelligence techniques has garnered significant interest in recent research due to their pivotal role in enhancing the quality of educational offerings. This study investigated the impact of employing artificial intelligence techniques on improving the quality of educational services, as perceived by students enrolled in the College of Pharmacy at the University of Baghdad. The study sample comprised 379 male and female students. A descriptive-analytical approach was used, with a questionnaire as the primary tool for data collection. The findings indicated that the application of artificial intelligence methods was highly effective, and the educational services provided to students were of exceptional quality.

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Multi-level model of the factors that affect the escalation of dust in Iraq
...Show More Authors

In this research The study of Multi-level  model (partial pooling model) we consider The partial pooling model which is one Multi-level  models and one of  the Most important models and extensive use and application in the analysis of the data .This Model characterized by the fact that the treatments take hierarchical or structural Form, in this partial pooling models, Full Maximum likelihood FML was used to estimated parameters of partial pooling models (fixed and random ), comparison between the preference of these Models, The application was on the Suspended Dust data in Iraq, The data were for four and a half years .Eight stations were selected randomly  among the stations in Iraq. We use Akaik′s Informa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 01 2022
Journal Name
Revue Française D'allergologie
Indoor house dust-borne fungi and risk of allergic respiratory diseases in Baghdad city
...Show More Authors

View Publication
Scopus (10)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Mon Jul 05 2021
Journal Name
Revue Française D’allergologie
Indoor house dust-borne fungi and risk of allergic respiratory diseases in Baghdad city
...Show More Authors

Publication Date
Wed Apr 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Multi-level model of the factors that affect the escalation of dust in Iraq
...Show More Authors

In this research The study of Multi-level  model (partial pooling model) we consider The partial pooling model which is one Multi-level  models and one of  the Most important models and extensive use and application in the analysis of the data .This Model characterized by the fact that the treatments take hierarchical or structural Form, in this partial pooling models, Full Maximum likelihood FML was used to estimated parameters of partial pooling models (fixed and random ), comparison between the preference of these Models, The application was on the Suspended Dust data in Iraq, The data were for four and a half years .Eight stations were selected randomly  among the stations in Iraq. We use Akaik′s Informa

... Show More
View Publication Preview PDF
Crossref