Preferred Language
Articles
/
DxenW5IBVTCNdQwC2K3g
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, comes in second place with a gross ratio of 91%. Furthermore, Bayesian ridge (BR), linear regressor (LR), and stochastic gradient descent (SGD), with mean square error and with accuracy ratios of 84.365%, 84.363%, and 79%. As a result, the performance precision of these regression models yields. The interaction framework was designed to be a straightforward tool for working with this paradigm. This model is a valuable tool for establishing strategies to counter the swiftness of climate change in the area under study.</span>

Scopus Crossref
View Publication
Publication Date
Fri May 01 2020
Journal Name
International Journal Of Advanced Science And Technology
Improved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval
...Show More Authors

Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN

... Show More
Publication Date
Wed May 31 2023
Journal Name
Iraqi Geological Journal
Studying the Effect of Permeability Prediction on Reservoir History Matching by Using Artificial Intelligence and Flow Zone Indicator Methods
...Show More Authors

The map of permeability distribution in the reservoirs is considered one of the most essential steps of the geologic model building due to its governing the fluid flow through the reservoir which makes it the most influential parameter on the history matching than other parameters. For that, it is the most petrophysical properties that are tuned during the history matching. Unfortunately, the prediction of the relationship between static petrophysics (porosity) and dynamic petrophysics (permeability) from conventional wells logs has a sophisticated problem to solve by conventional statistical methods for heterogeneous formations. For that, this paper examines the ability and performance of the artificial intelligence method in perme

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Wed Oct 30 2024
Journal Name
Internet Technology Letters
Using <scp>5G</scp> Standards for Smart Healthcare Applications and Designing an Artificial Intelligence‐Based Industry 4.0 Communication System
...Show More Authors
ABSTRACT<p>The introduction of Industry 4.0, to improve Internet of Things (IoT) standards, has sparked the creation of 5G, or highly sophisticated wireless networks. There are several barriers standing in the way of 5G green communication systems satisfying the expectations for faster networks, more user capacity, lower resource consumption, and cost‐effectiveness. 5G standards implementation would speed up data transmission and increase the reliability of connected devices for Industry 4.0 applications. The demand for intelligent healthcare systems has increased globally as a result of the introduction of the novel COVID‐19. Designing 5G communication systems presents research problems such as optimizing </p> ... Show More
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Jun 20 2019
Journal Name
Baghdad Science Journal
Taxonomy of Memory Usage in Swarm Intelligence-Based Metaheuristics
...Show More Authors

Metaheuristics under the swarm intelligence (SI) class have proven to be efficient and have become popular methods for solving different optimization problems. Based on the usage of memory, metaheuristics can be classified into algorithms with memory and without memory (memory-less). The absence of memory in some metaheuristics will lead to the loss of the information gained in previous iterations. The metaheuristics tend to divert from promising areas of solutions search spaces which will lead to non-optimal solutions. This paper aims to review memory usage and its effect on the performance of the main SI-based metaheuristics. Investigation has been performed on SI metaheuristics, memory usage and memory-less metaheuristics, memory char

... Show More
View Publication Preview PDF
Crossref (3)
Clarivate Crossref
Publication Date
Wed Nov 27 2024
Journal Name
Frontiers In Education
The impact of using artificial intelligence techniques in improving the quality of educational services/case study at the University of Baghdad
...Show More Authors

The utilization of artificial intelligence techniques has garnered significant interest in recent research due to their pivotal role in enhancing the quality of educational offerings. This study investigated the impact of employing artificial intelligence techniques on improving the quality of educational services, as perceived by students enrolled in the College of Pharmacy at the University of Baghdad. The study sample comprised 379 male and female students. A descriptive-analytical approach was used, with a questionnaire as the primary tool for data collection. The findings indicated that the application of artificial intelligence methods was highly effective, and the educational services provided to students were of exceptional quality.

... Show More
View Publication Preview PDF
Publication Date
Wed Aug 02 2023
Journal Name
Contemporary Trends And Issues In Science Education
Using Multi-faceted Rasch Models to Understand Middle School Students’ Argumentation Around Scenarios Grounded in Socio-scientific Issues
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Ain Shams Engineering Journal
Estimating server utilization rate in single server queuing models using an approximate solution of stiff fluid flow model
...Show More Authors

View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Mar 31 2022
Journal Name
Iraqi Geological Journal
Development of New Models to Determine the Rheological Parameters of Water-Based Drilling Fluid using Artificial Neural Networks
...Show More Authors

It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological

... Show More
Crossref
Publication Date
Mon Mar 31 2025
Journal Name
Iraqi Statisticians Journal
Hypothesis Testing for Non-Normal Multiple Compact Regression Model
...Show More Authors

Generalized multivariate transmuted Bessel distribution belongs to the family of probability distributions with a symmetric heavy tail. It is considered a mixed continuous probability distribution. It is the result of mixing the multivariate Gaussian mixture distribution with the generalized inverse normal distribution. On this basis, the paper will study a multiple compact regression model when the random error follows a generalized multivariate transmuted Bessel distribution. Assuming that the shape parameters are known, the parameters of the multiple compact regression model will be estimated using the maximum likelihood method and Bayesian approach depending on non-informative prior information. In addition, the Bayes factor was used

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jul 01 2017
Journal Name
Diyala Journal For Pure Science
Correlated Hierarchical Autoregressive Models Image Compression
...Show More Authors

View Publication
Crossref