Preferred Language
Articles
/
DxenW5IBVTCNdQwC2K3g
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, comes in second place with a gross ratio of 91%. Furthermore, Bayesian ridge (BR), linear regressor (LR), and stochastic gradient descent (SGD), with mean square error and with accuracy ratios of 84.365%, 84.363%, and 79%. As a result, the performance precision of these regression models yields. The interaction framework was designed to be a straightforward tool for working with this paradigm. This model is a valuable tool for establishing strategies to counter the swiftness of climate change in the area under study.</span>

Scopus Crossref
View Publication
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimation and Forecasting of Evaporation Losses for Lake Mosul Dam
...Show More Authors

Evaporation from water bodies is important and considered a major problem in dry and semi-dry regions, in this research the evaporation has been analyzed from two approaches: engineeringly and statistically. The engineering approach deals with the calculation of evaporation rates of Mosul Dam Lake. Three methods were used: pan evaporation class A, the combined and the mass-transfer. It was found that the values ​​obtained by pan evaporation class A method was the highest among the other, while the mass transfer method achieved the lowest results. The evaporation rates during the year ranged according to the first method (0.9–5.5) mm/day, second (0.7–11.5) mm/day and the last method (1.0039×106) m3/year, whi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jul 09 2024
Journal Name
Diagnostics
A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification
...Show More Authors

Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Water Process Engineering
Predominant mechanisms for the removal of nickel metal ion from aqueous solution using cement kiln dust
...Show More Authors

Scopus (56)
Crossref (40)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Iraqi Journal Of Physics
Testing the MODIS Thermal Modes for Dust Storms Monitoring
...Show More Authors

Climate change is one of the global issues that is receiving wide attention due to its clear impact on all living organisms. This is essential for Iraq since it was classified as the fifth most vulnerable country to climate change. One of the manifestations of these changes in Iraq is the increasing frequency and severity of dust storms. In this study, the Normalized Difference Dust Index (NDDI) spectral index for Moderate Resolution Imaging Spectroradiometer (MODIS) sensor bands was used to measure and track the dust storm that occurred on May 16, 2022, as well as to test the validity of one of the daily products of this sensor, MOD11A1, to measure surface temperature and emissivity before and after the storm. It was found that the MOD0

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Climate change and dust storms in Iraq / 'Baghdad', case study
...Show More Authors

A dust storm in Iraq is a climatic phenomenon common in arid and semi-arid regions . The frequency of the occurrence has increased drastically in the last decade and it is increasing continuously .Baghdad city like the rest of Iraq is suffering from the significant increase in dust storms . In this research , the study of the phenomenon of dust storms for all types (Suspended dust , rising dust , dust storm) , and its relationship with some climate variables (Temperature , rainfall ,wind speed) .The statement of the impact of climate change on this phenomenon to Baghdad station  for the period (1981 – 2012) . Time series has been addressing the phenomenon of storms and cli

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 22 2023
Journal Name
Mesopotamian Journal Of Big Data
Parallel Machine Learning Algorithms
...Show More Authors

 To expedite the learning process, a group of algorithms known as parallel machine learning algorithmscan be executed simultaneously on several computers or processors. As data grows in both size andcomplexity, and as businesses seek efficient ways to mine that data for insights, algorithms like thesewill become increasingly crucial. Data parallelism, model parallelism, and hybrid techniques are justsome of the methods described in this article for speeding up machine learning algorithms. We alsocover the benefits and threats associated with parallel machine learning, such as data splitting,communication, and scalability. We compare how well various methods perform on a variety ofmachine learning tasks and datasets, and we talk abo

... Show More
View Publication
Crossref (15)
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of estimations methods of the entropy function to the random coefficients for two models: the general regression and swamy of the panel data
...Show More Authors

In this study, we focused on the random coefficient estimation of the general regression and Swamy models of panel data. By using this type of data, the data give a better chance of obtaining a better method and better indicators. Entropy's methods have been used to estimate random coefficients for the general regression and Swamy of the panel data which were presented in two ways: the first represents the maximum dual Entropy and the second is general maximum Entropy in which a comparison between them have been done by using simulation to choose the optimal methods.

The results have been compared by using mean squares error and mean absolute percentage error to different cases in term of correlation valu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Application Artificial Forecasting Techniques in Cost Management (review)
...Show More Authors

For the duration of the last few many years many improvement in computer technology, software program programming and application production had been followed with the aid of diverse engineering disciplines. Those trends are on the whole focusing on synthetic intelligence strategies. Therefore, a number of definitions are supplied, which recognition at the concept of artificial intelligence from exclusive viewpoints. This paper shows current applications of artificial intelligence (AI) that facilitate cost management in civil engineering tasks. An evaluation of the artificial intelligence in its precise partial branches is supplied. These branches or strategies contributed to the creation of a sizable group of fashions s

... Show More
View Publication Preview PDF
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Structural Time Series for Forecasting Oil Prices
...Show More Authors

There are many methods of forecasting, and these methods take data only, analyze it, make a prediction by analyzing, neglect the prior information side and do not considering the fluctuations that occur overtime. The best way to forecast oil prices that takes the fluctuations that occur overtime and is updated by entering prior information is the Bayesian structural time series (BSTS) method. Oil prices fluctuations have an important role in economic so predictions of future oil prices that are crucial for many countries whose economies depend mainly on oil, such as Iraq. Oil prices directly affect the health of the economy. Thus, it is necessary to forecast future oil price with models adapted for emerging events. In this article, we st

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
comparison Bennett's inequality and regression in determining the optimum sample size for estimating the Net Reclassification Index (NRI) using simulation
...Show More Authors

 Researchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the dat

... Show More
View Publication Preview PDF
Crossref