E-learning applications according to the levels of enlightenment (STEM Literacy) for physics teachers in the secondary stage. The sample consists of (400) teachers, at a rate of (200) males (50%), and (200)females (50%), distributed over (6) directorates of education in Baghdad governorate on both sides of Rusafa and Karkh. To verify the research goals, the researcher built a scale of e-learning applications according to the levels of STEM Literacy, which consists of (50) items distributed over (5) levels. The face validity of the scale and its stability were verified by extracting the stability coefficient through the internal consistency method “Alf-Cronbach”. The following statistical means were used: Pearson correlation coefficient, arithmetic mean, and standard deviation, where the result was reached that secondary school physics teachers have e-learning applications according to (STEM Literacy) levels. In light of this, the researcher presented a set of recommendations and suggestions.
Refractive indices (nD), viscosities (η) and densities (ρ) were deliberated for the binary mixtures created by dipropyl amine with 1-octanol, 1-heptanol, 1-hexanol, 1-pentanol and tert-pentyl alcohol at temperature 298.15 K over the perfect installation extent. The function of Redlich-Kister were used to calculate and renovated of the refractive index deviations (∆nD), viscosity deviations (ηE), excess molar Gibbs free energy (∆G*E) and excess molar volumes (VmE) The standard errors and coefficients were respected by this function. The values of ∆nD, ηE, VmE and ∆G*E were plotted against mole fraction of dipropyl amine. In all cases the obtained ηE, ∆G*E, VmE and ∆nD values were negative at 298.15K. Effect of carbo
... Show MoreFace recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
Diagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad
... Show MoreThe complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Tra
... Show MoreTo maintain a sustained competitive position in the contemporary environment of knowledge economy, organizations as an open social systems must have an ability to learn and know how to adapt to rapid changes in a proper fashion so that organizational objectives will be achieved efficiently and effectively. A multilevel approach is adopted proposing that organizational learning suffers from the lack of interest about the strategic competitive performance of the organization. This remains implicit almost in all models of organizational learning and there is little focus on how learning organizations achieve sustainable competitive advantage . A dynamic model that captures t
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreThis paper aims to build a modern vision for Islamic banks to ensure sustainability and growth, as well it aims to highlight the positive Iraqi steps in the Islamic banking sector. In order to build this vision, several scientific research approaches were adopted (quantitative, descriptive analytical, descriptive). As for the research community, it was for all the Iraqi private commercial banks, including Islamic banks. The research samples varied according to a diversity of the methods and the data availability. A questionnaire was constructed and conducted, measuring internal and external honesty. 50 questionnaires were distributed to Iraqi academic specialized in Islamic banking. All distributed forms were subject to a thorough analys
... Show MoreThe compliance is considered
This study aimed to deduce the net atrioventricular compliance which is affected the trans mitral blood flow.
This study focuses on study group of 25 patients (15 males
The study aimed to test the hypothesis of Caldor to estimate the relationship between industrial production and GDP growth in Iraq using with Integration Framework and to determine the causal relationship in the short and long term using the error correction vector model for the period 1990-2016. the results showed a long-term equilibrium relationship between GDP and industrial output, while Ganger causality tests showed a causal relationship in the long run of GDP to output Subliminal thus illustrated the extent of the recession suffered by the industrial sector, which is supposed to be the driving force of the economy and the development and expansion of the productive base of the industry, so this study recommends attent
... Show MoreAutorías: Ghassan Adeeb Abdulhasan, Rasha Raed Hamid Hameed, Hussein Jabber Abood. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 6, 2022. Artículo de Revista en Dialnet.