Fusion can be described as the process of integrating information resulting from the collection of two or more images from different sources to form a single integrated image. This image will be more productive, informative, descriptive and qualitative as compared to original input images or individual images. Fusion technology in medical images is useful for the purpose of diagnosing disease and robot surgery for physicians. This paper describes different techniques for the fusion of medical images and their quality studies based on quantitative statistical analysis by studying the statistical characteristics of the image targets in the region of the edges and studying the differences between the classes in the image and the calculation
... Show MoreMerging biometrics with cryptography has become more familiar and a great scientific field was born for researchers. Biometrics adds distinctive property to the security systems, due biometrics is unique and individual features for every person. In this study, a new method is presented for ciphering data based on fingerprint features. This research is done by addressing plaintext message based on positions of extracted minutiae from fingerprint into a generated random text file regardless the size of data. The proposed method can be explained in three scenarios. In the first scenario the message was used inside random text directly at positions of minutiae in the second scenario the message was encrypted with a choosen word before ciphering
... Show MoreMost includeding techniques of digital watermark even now working through the direct inclusion in the pixel without taking into account the level of compression (attack) that can go wrong, which makes digital watermark can be discarded easily. In this research, a method was proposed to overcome this problem, which is based on DCT (after image partitioned into non overlapped blocks with size 8×8 pixel), accompanied by a quantization method. The watermark (digital image) is embedded in DCT frequency domain seeking the blocks have highest standard deviation (the checking is only on the AC coefficients) within a predetermined threshold value, then the covered image will compressed (attacked) varying degrees of compression. The suggested met
... Show MoreIn this paper an algorithm for Steganography using DCT for cover image and DWT for hidden image with an embedding order key is proposed. For more security and complexity the cover image convert from RGB to YIQ, Y plane is used and divided into four equally parts and then converted to DCT domain. The four coefficient of the DWT of the hidden image are embedded into each part of cover DCT, the embedding order based on the order key of which is stored with cover in a database table in both the sender and receiver sender. Experimental results show that the proposed algorithm gets successful hiding information into the cover image. We use Microsoft Office Access 2003 database as DBMS, the hiding, extracting algo
... Show MoreThe steganography (text in image hiding) methods still considered important issues to the researchers at the present time. The steganography methods were varied in its hiding styles from a simple to complex techniques that are resistant to potential attacks. In current research the attack on the host's secret text problem didn’t considered, but an improved text hiding within the image have highly confidential was proposed and implemented companied with a strong password method, so as to ensure no change will be made in the pixel values of the host image after text hiding. The phrase “highly confidential” denoted to the low suspicious it has been performed may be found in the covered image. The Experimental results show that the covere
... Show MoreMagnetic Resonance Imaging (MRI) is one of the most important diagnostic tool. There are many methods to segment the
tumor of human brain. One of these, the conventional method that uses pure image processing techniques that are not preferred because they need human interaction for accurate segmentation. But unsupervised methods do not require any human interference and can segment the brain with high precision. In this project, the unsupervised classification methods have been used in order to detect the tumor disease from MRI images. These metho
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More