This study has dealt with, the issue of classification of rural road network , in addition to prepare a suggested for the classification for this network in Iraq , this classification account , the specifications and characteristics of rural roads, population, and the range taking of settlements , then this classification was applied on the rural road network in the Najaf province there are four categories of classification ,the first is major arterial rural roads divided into two major arterial and minor arterial roads , while the second category collected roads which was divided into minor arterial roads and main collected roads. The third category was represented by Local Roads , it has been divided into paved roads and unpaved, the f
... Show MoreIn the present work, classification of radioactive wastes based on Annual Intake (AI) values is studied. Where the characterization of radionuclides was done by hand held GeLi detector with an overall efficiency better than 42%. It was noted the most predominant contaminant are Cs-137, Co-60 and Pa-234.The radioactive waste in disposal silo has been divided into five categories according to the harmful effect of radionuclides.For the purpose of storageradioactive wastein a safe manner, it wassuggesteda new method by shielding radioactive waste in each category with concrete;where the thickness of shielding is the time required to reduce the annual dose to 10%.
Diabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed
... Show MoreWhen images are customized to identify changes that have occurred using techniques such as spectral signature, which can be used to extract features, they can be of great value. In this paper, it was proposed to use the spectral signature to extract information from satellite images and then classify them into four categories. Here it is based on a set of data from the Kaggle satellite imagery website that represents different categories such as clouds, deserts, water, and green areas. After preprocessing these images, the data is transformed into a spectral signature using the Fast Fourier Transform (FFT) algorithm. Then the data of each image is reduced by selecting the top 20 features and transforming them from a two-dimensiona
... Show MoreEichhornia crassipes (Mart.) Solms or Water hyacinth is a fertile floating aquatic widespread in worldwide. The form of plants and the anatomy parts of this plant were studied. The most important feature was obvious the air chamber with intercellular spaces by amazing arrangement. As well can notice aerenchyma tissue allow the parts of plants floated on the surface of water located in the ground meristem of root, petiole and in the mesophyll of leaves also presence of two type of crystals raphides and styloid crystals was noted of various member in the plant in addition appear astrosclereids around the air chambers, to support the plant parts from the unsuitable environmental conditions such as the speed of water flow or floods or high leve
... Show MoreCorruption (Definition , Characteristics , Reasons , Features , and ways of combating it)
Optical Character Recognition (OCR) research includes computer vision, artificial intelligence, and pattern recognition. Character recognition has garnered a lot of attention in the last decade due to its broad variety of uses and applications, including multiple-choice test data, business documents (e.g., ID cards, bank notes, passports, etc.), and automatic number plate recognition. This paper introduces an automatic recognition system for printed numerals. The automatic reading system is based on extracting local statistical and geometrical features from the text image. Those features are represented by eight vectors extracted from each digit. Two of these features are local statistical (A, A th), and six are local
... Show MoreIn this paper, an efficient image segmentation scheme is proposed of boundary based & geometric region features as an alternative way of utilizing statistical base only. The test results vary according to partitioning control parameters values and image details or characteristics, with preserving the segmented image edges.