The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.
The main aim of this research paper is investigating the effectiveness and validity of Meso-Scale Approach (MSA) as a modern technique for the modeling of plain concrete beams. Simply supported plain concrete beam was subjected to two-point loading to detect the response in flexural. Experimentally, a concrete mix was designed and prepared to produce three similar standard concrete prisms for flexural testing. The coarse aggregate used in this mix was crushed aggregate. Numerical Finite Element Analysis (FEA) was conducted on the same concrete beam using the meso-scale modeling. The numerical model was constructed to be a bi-phasic material consisting of cement mortar and coarse aggregate. The interface between the two c
... Show MoreAbstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization
... Show MoreThe use of silicon carbide is increasing significantly in the fields of research and technology. Topological indices enable data gathering on algebraic graphs and provide a mathematical framework for analyzing the chemical structural characteristics. In this paper, well-known degree-based topological indices are used to analyze the chemical structures of silicon carbides. To evaluate the features of various chemical or non-chemical networks, a variety of topological indices are defined. In this paper, a new concept related to the degree of the graph called "bi-distance" is introduced, which is used to calculate all the additive as well as multiplicative degree-based indices for the isomer of silicon carbide, Si2
... Show MoreThe topological indices of the "[(µ3-2, 5-dioxyocyclohexylidene)-bis ((2-hydrido)-nonacarbonyltriruthenium]” were studied within the quantum theory of atoms in the molecule (QTAIM), clusters are
analyzed using the density functional theory (DFT). The estimated topological variables accord with prior
descriptions of comparable transition metal complexes. The Quantum Theory of Atom, in molecules
investigation of the bridging core component, Ru3H2, revealed critical binding points (chemical bonding)
between Ru (1) and Ru (2) and Ru (3). Consequently, delocalization index for this non-bonding interaction
was calculated in the core of Ru3H2, the interaction is of the (5centre–5electron) class.
Background: Parotid gland tumors account for 80% of all salivary gland neoplasms, 20% of these are malignant, but in daily clinical practice most parotid masses are operated on before obtaining the final histological diagnosis. This clinical setting further complicates the critical point of parotid surgery, which is the management of the facial nerve. Materials and methods: 45 patients underwent parotidectomy for benign and malignant neoplasms. A complete history is collected from the patients with the duration and the site of the tumor, the facial nerve examined and its associations, a medical consultation done for opinion and management. Clinical examination with facial nerve was mandatory to avoid any mistakes that may occur. The most si
... Show More
The search tried to achieve a major scientific goal represented by (Knowing the perspective that has been treated through press releases of woman articles in Al- Sabah newspaper), via:
- Specifying the rate of woman topics in Al-Sabah newspaper, compared with the other subjects.
- Revealing the nature of the topics of the woman that the newspaper dealt with.
- Identifying the ID of journalistic-product that dealt with the woman topics.
- Knowing the journalistic arts that the woman topics have been treated by.
- Standing on the cases which woman topics concentrated on, through Al-Sabah newspaper.
In this paper, an approach for object tracking that is inspired from human oculomotor system is proposed and verified experimentally. The developed approach divided into two phases, fast tracking or saccadic phase and smooth pursuit phase. In the first phase, the field of the view is segmented into four regions that are analogue to retinal periphery in the oculomotor system. When the object of interest is entering these regions, the developed vision system responds by changing the values of the pan and tilt angles to allow the object lies in the fovea area and then the second phase will activate. A fuzzy logic method is implemented in the saccadic phase as an intelligent decision maker to select the values of the pan and tilt angle based
... Show More