The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.
The growing use of tele
This paper presents a new secret diffusion scheme called Round Key Permutation (RKP) based on the nonlinear, dynamic and pseudorandom permutation for encrypting images by block, since images are considered particular data because of their size and their information, which are two-dimensional nature and characterized by high redundancy and strong correlation. Firstly, the permutation table is calculated according to the master key and sub-keys. Secondly, scrambling pixels for each block to be encrypted will be done according the permutation table. Thereafter the AES encryption algorithm is used in the proposed cryptosystem by replacing the linear permutation of ShiftRows step with the nonlinear and secret pe
... Show MoreAbstract
This work deals with a numerical investigation to evaluate the utilization of a water pipe buried inside a roof to reduce the heat gain and minimize the transmission of heat energy inside the conditioning space in summer season. The numerical results of this paper showed that the reduction in heat gain and energy saving could be occurred with specific values of parameters, like the number of pipes per square meter, the ratio of pipe diameter to the roof thickness, and the pipe inlet water temperature. Comparing with a normal roof (without pipes), the results indicated a significant reduction in energy heat gain which is about 37.8% when the number of pipes per m
... Show MoreContinuous escalation of the cost of generating energy is preceded by the fact of scary depletion of the energy reserve of the fossil fuels and pollution of the environment as developed and developing countries burn these fuels. To meet the challenge of the impending energy crisis, renewable energy has been growing rapidly in the last decade. Among the renewable energy sources, solar energy is the most extensively available energy, has the least effect on the environment, and is very efficient in terms of energy conversion. Thus, solar energy has become one of the preferred sources of renewable energy. Flat-plate solar collectors are one of the extensively-used and well-known types of solar collectors. However, the effectiveness of the coll
... Show MoreHuman interaction technology based on motion capture (MoCap) systems is a vital tool for human kinematics analysis, with applications in clinical settings, animations, and video games. We introduce a new method for analyzing and estimating dorsal spine movement using a MoCap system. The captured data by the MoCap system are processed and analyzed to estimate the motion kinematics of three primary regions; the shoulders, spine, and hips. This work contributes a non-invasive and anatomically guided framework that enables region-specific analysis of spinal motion which could be used as a clinical alternative to invasive measurement techniques. The hierarchy of our model consists of five main levels; motion capture system settings, marker data
... Show MoreThe present work aims to study the efficiency of using aluminum refuse, which is available locally (after dissolving it in sodium hydroxide), with different coagulants like alum [Al2 (SO4)3.18H2O], Ferric chloride FeCl3 and polyaluminum chloride (PACl) to improve the quality of water. The results showed that using this coagulant in the flocculation process gave high results in the removal of turbidity as well as improving the quality of water by precipitating a great deal of ions causing hardness. From the experimental results of the Jar test, the optimum alum dosages are (25, 50 and 70 ppm), ferric chloride dosages are (15, 40 and 60 ppm) and polyaluminum chloride dosages were (10, 35 and 55 ppm) for initial water turbidity (100, 500 an
... Show MoreThe present work includes a design and characteristics study of a controlling the wavelength of high power diode laser by thermoelectric cooler [TEC] . The work includes the operation of the [TEC] to control the temperature of the diode laser between ( 0- +30) °C by changing the resistance of thermistor. We can control a limited temperature of a diode laser by changing the phase cooling between hot and cold faces of the diode, this process can be attempted by comparator type [LM –311] .The theoretical results give a model for controlling the temperature with, the suitable wavelength.
Abstract: Facial defects resulting from neoplasms, congenital, acquired malformations or trauma can be restored with facial prosthesis using different materials and retention methods to achieve life-like look and function. A nasal prosthesis can re-establish aesthetic form and anatomic contours for mid-facial defects, often more effectively than by surgical reconstruction as the nose is relatively immobile structure. For successful results, lot of factors such as harmony, texture, color matching and blending of tissue interface with the prosthesis are important. The aim of this study is to describe the non-surgical rehabilitation with nasal prosthesis for an Iraqi patient who received rhinectomy as a result of squamous cell carcinoma of the
... Show MoreAbstract
The aim of the present research is to identify the test wisdom and the preoccupation with learning and psychological tension among postgraduate students at the University of Samarra according to the variables of the department, gender, age, and employee or non-employee, and revealing the relationship between the test wisdom and the preoccupation with learning and psychological tension. The research sample consisted of (75) students randomly selected from postgraduate students at the college of Education. The researcher applies test –wisdom of (Mellman & Ebel) and measurement of preoccupation with learning prepared by (Al-zaabi 2013) also, the researcher used the scale of t
... Show MoreAccurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty
... Show More