Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genotype-by-environment interactions. Permutation-based feature importance analysis further revealed that planting date had a more significant impact on trait variation than genotype. To identify optimal combinations of genotype and planting date for maximizing morphological traits, the RF model was integrated with the Non-dominated Sorting Genetic Algorithm II (NSGA-II). According to the RF–NSGA-II optimization results, the optimal values, including 26 branches per plant, a growth period of 176 days, 116 bolls per plant, and 1517 seed numbers per plant, were achieved with the Qaleganj genotype planted on May 5. Collectively, these findings highlight the potential of integrating machine learning and evolutionary optimization algorithms as powerful computational tools for crop improvement and agronomic decision-making.
Abstract
Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous varia
... Show MoreHerein, we report designing a new Δ (delta‐shaped) proton sponge base of 4,12‐dihydrogen‐4,8,12‐triazatriangulene (compound
The regular job of a reservoir engineer is to put a development plan to increase hydrocarbon production as possible and within economic and technical considerations. The development strategy for the giant reservoir is a complex and challenging task through the decision-making analysis process. Due to the limited surface water treatment facility, the reservoir management team focuses on minimizing water cut as low as possible by check the flow of formation and injected water movement through the Mishrif reservoir. In this research, a representative sector was used to make the review of water injection configuration, which is considered an efficient tool to make study in a particular area of the entire field when compared with the ful
... Show MoreIn this study, we focused on the random coefficient estimation of the general regression and Swamy models of panel data. By using this type of data, the data give a better chance of obtaining a better method and better indicators. Entropy's methods have been used to estimate random coefficients for the general regression and Swamy of the panel data which were presented in two ways: the first represents the maximum dual Entropy and the second is general maximum Entropy in which a comparison between them have been done by using simulation to choose the optimal methods.
The results have been compared by using mean squares error and mean absolute percentage error to different cases in term of correlation valu
... Show MoreIn this study, the chamomile flowers (Matricaria recutitaL) which grow in Iraqi Kurdistan region during the seasons of (2008) are collected. The percentage of essential oil was determined by using steam distillation and the extraction of flowers performed with petroleum ether (70-80) ºC and methanol 70% using ultrasonic extraction. Total phenolic compounds were determined from methanol extracts by using Folin-Ciocalteu method. The extracts were evaluated by thin layer chromatography, ultraviolet absorption and the biological activities were evaluated through their antibacterial action against two types of bacteria using hole method. The flowers showed a composition of 0.071% ash, 0.4% essential oil, 3.2% non oily compounds, 4% oil, 1.9% mo
... Show MoreThis study was carried out to evaluate the antioxidant activity of Iraqi sumac seeds (Rhus coriaria. L) (Anacardiaceae). Total phenolic compounds and flavoniods were determined in three different sumac seed extracts (SSE) (aqueous,ethanolic and methanolic extract). For extraction Antioxidant activity of SSE were evaluated by various antioxidant assays, including total antioxidant capacity, reducing power,by using 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging, nitric oxide scavenging, Hydroxyl radical scavenging, and metal ion chelating activities. These various antioxidant activities were compared with ascorbic acid as a standard antioxidant.The results showed that the three(SSE), contained large amounts of phenolic and flavonio
... Show MoreInventory or inventories are stocks of goods being held for future use or sale. The demand for a product in is the number of units that will need to be removed from inventory for use or sale during a specific period. If the demand for future periods can be predicted with considerable precision, it will be reasonable to use an inventory rule that assumes that all predictions will always be completely accurate. This is the case where we say that demand is deterministic.
The timing of an order can be periodic (placing an order every days) or perpetual (placing an order whenever the inventory declines to units).
in this research we discuss how to formulating inv
... Show More