Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genotype-by-environment interactions. Permutation-based feature importance analysis further revealed that planting date had a more significant impact on trait variation than genotype. To identify optimal combinations of genotype and planting date for maximizing morphological traits, the RF model was integrated with the Non-dominated Sorting Genetic Algorithm II (NSGA-II). According to the RF–NSGA-II optimization results, the optimal values, including 26 branches per plant, a growth period of 176 days, 116 bolls per plant, and 1517 seed numbers per plant, were achieved with the Qaleganj genotype planted on May 5. Collectively, these findings highlight the potential of integrating machine learning and evolutionary optimization algorithms as powerful computational tools for crop improvement and agronomic decision-making.
Relying on modern work strategies, such as adopting scientific inductions, consolidates the information in the learner’s memory, develops the skill work of the football player, and raises the efficiency of their motor abilities. From this standpoint, the researcher, who is a teacher at the University of Baghdad, College of Physical Education and Sports Sciences, and follows most of the sports club teams in youth football, believes that there must be From extrapolations through the machine and employing it in the field to serve the skill aspect and benefit from scientific technology in development and making it a useful tool to serve the sports field in football, as the goal of the research was the efficiency of machine extrapolation in de
... Show MoreThis study was done to compare the morphometric parameters of placentas in well controlled patients with preeclampsia, diabetes, and preeclampsia-diabetes with that of normal uncomplicated placentas. Patients & Methods: A total of Twenty four placentas were freshly collected. Six placentas for control group and eighteen placentas for complicated group (preeclamptic-diabetic and preeclamptic--diabetic subgroups). The placentas were grossly examined (shape, number of cotyledons, weight, and thickness). After suitable fixation, tissue processing and sectioning, the sections were stained by hematoxylin and eosin to study the general morphology and morphometry of the following parameters: number of terminal villi, number of syncytial knots, numb
... Show MoreAbstract The Object of the study aims to identify the effectiveness of using the 7E’s learning cycle to learn movement chains on uneven bars, for this purpose, we used the method SPSS. On a sample composed (20) students on collage of physical education at the university of Baghdad Chosen as two groups experimental and control group (10) student for each group, and for data collection, we used SPSS After collecting the results and having treated them statistically, we conclude the use 7E’s learning cycle has achieved remarkable positive progress, but it has diverged between to methods, On this basis, the study recommended the necessity of applying 7E’s learning cycle strategy in learning the movement chain on uneven bar
... Show MoreThe aim of this study to identify the effect of using two strategies for active learning ( Jigsaw Strategy & Problems Solving) in learning some balanced beam's skills in artistic gymnastics for women , as well as to identify the best of the three methods (jigsaw strategy , problems solving and the traditional method) in learning some skills balance beam , the research has used the experimental methodology, and the subject included the students of the college of Physical Education and Sports Sciences / University of Baghdad / third grade and by the lot was selected (10) students for each group of groups Search three and The statistical package for social sciences (SPSS) was used means, the standard deviation and the (T.test), the one way a n
... Show MoreTo find out a simple and efficient equation to estimate maize ear grain weight on farm (in situ), twenty three maize crosses along with two synthetics were grown in the field. On the experimental farm of the Dept. of Field Crop Sci., College of Agric., Univ. of Baghdad, seeds of twenty five maize genotypes were grown in the fall season of 2013 with three replicates. At dough stage of the kernels, five naked ears of each experimental units were measured for length and maximum diameter. This will sum up 125 ears of the trial. The volumes of ears were calculated as cylinder (length× r2× 3.1416). Grain weight of all ears were determined after harvesting and drying to 15% grain moisture. A constant was calculated by dividing ear grain weight b
... Show MoreE-Learning packages are content and instructional methods delivered on a computer
(whether on the Internet, or an intranet), and designed to build knowledge and skills related to
individual or organizational goals. This definition addresses: The what: Training delivered
in digital form. The how: By content and instructional methods, to help learn the content.
The why: Improve organizational performance by building job-relevant knowledge and
skills in workers.
This paper has been designed and implemented a learning package for Prolog Programming
Language. This is done by using Visual Basic.Net programming language 2010 in
conjunction with the Microsoft Office Access 2007. Also this package introduces several
fac
Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show More