Preferred Language
Articles
/
DhgG55gBVTCNdQwCasKj
Machine learning models for predicting morphological traits and optimizing genotype and planting date in roselle (Hibiscus Sabdariffa L.)
...Show More Authors

Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genotype-by-environment interactions. Permutation-based feature importance analysis further revealed that planting date had a more significant impact on trait variation than genotype. To identify optimal combinations of genotype and planting date for maximizing morphological traits, the RF model was integrated with the Non-dominated Sorting Genetic Algorithm II (NSGA-II). According to the RF–NSGA-II optimization results, the optimal values, including 26 branches per plant, a growth period of 176 days, 116 bolls per plant, and 1517 seed numbers per plant, were achieved with the Qaleganj genotype planted on May 5. Collectively, these findings highlight the potential of integrating machine learning and evolutionary optimization algorithms as powerful computational tools for crop improvement and agronomic decision-making.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Image Compression Using 3-D Two-Level Technique
...Show More Authors

In this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent r

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Applied Acoustics
Theoretical model of absorption coefficient of an inhomogeneous MPP absorber with multi-cavity depths
...Show More Authors

View Publication
Scopus (79)
Crossref (68)
Scopus Clarivate Crossref