Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genotype-by-environment interactions. Permutation-based feature importance analysis further revealed that planting date had a more significant impact on trait variation than genotype. To identify optimal combinations of genotype and planting date for maximizing morphological traits, the RF model was integrated with the Non-dominated Sorting Genetic Algorithm II (NSGA-II). According to the RF–NSGA-II optimization results, the optimal values, including 26 branches per plant, a growth period of 176 days, 116 bolls per plant, and 1517 seed numbers per plant, were achieved with the Qaleganj genotype planted on May 5. Collectively, these findings highlight the potential of integrating machine learning and evolutionary optimization algorithms as powerful computational tools for crop improvement and agronomic decision-making.
A field experiment was conducted during winter season of 2021 at a research station of college of agricultural engineering sciences, university of Baghdad to determine the response of active fertility percentage and seed yield and its components of faba bean (Vicia faba L. cv. Aguadulce) to distance between plants and spraying of nano and traditional boron. A Randomized Complete Block Design according to split-plots arrangement was used at three replicates. The main plots were three distances between plants (25, 35 and 45 cm), while the sub plots including spraying of distilled water only (control treatment), spraying of boron at a 100 mg L-1 and spraying of nano boron at two concentrations (1
... Show MoreThe catalytic wet air oxidation (CWAO) of phenol has been studied in a trickle bed reactor
using active carbon prepared from date stones as catalyst by ferric and zinc chloride activation (FAC and ZAC). The activated carbons were characterized by measuring their surface area and adsorption capacity besides conventional properties, and then checked for CWAO using a trickle bed reactor operating at different conditions (i.e. pH, gas flow rate, LHSV, temperature and oxygen partial pressure). The results showed that the active carbon (FAC and ZAC), without any active metal supported, gives the highest phenol conversion. The reaction network proposed account
... Show MoreA field experiment was carried out at University of Baghdad, College of Agricultural Engineering Sciences during fall season of 2020 and spring season of 2021. This study was aimed evaluate the effect of the organic fertilizer and boron foliar on the yield of potatoes for processing. The factorial experiment (5*4) within RCBD and three replicates. The organic fertilizer as palm peat at four levels (0, 12, 24 and 36 ton. ha-1) in addition to the chemical fertilizer recommendation treatment. Boron at four Concentrations 0, 100, 150 and 200 mg. L-1 . The results revealed significant different among application of organic fertilizer at the level of 24 ton. ha-1 and the foliar application of boron at a concentration of 100 mg. L-1 in the
... Show MoreOptical burst switching (OBS) network is a new generation optical communication technology. In an OBS network, an edge node first sends a control packet, called burst header packet (BHP) which reserves the necessary resources for the upcoming data burst (DB). Once the reservation is complete, the DB starts travelling to its destination through the reserved path. A notable attack on OBS network is BHP flooding attack where an edge node sends BHPs to reserve resources, but never actually sends the associated DB. As a result the reserved resources are wasted and when this happen in sufficiently large scale, a denial of service (DoS) may take place. In this study, we propose a semi-supervised machine learning approach using k-means algorithm
... Show MoreThe problem of internal sulfate attack in concrete is widespread in Iraq and neighboring countries.This is because of the high sulfate content usually present in sand and gravel used in it. In the present study the total effective sulfate in concrete was used to calculate the optimum SO3 content. Regression models were developed based on linear regression analysis to predict the optimum SO3 content usually referred as (O.G.C) in concrete. The data is separated to 155 for the development of the models and 37 for checking the models. Eight models were built for 28-days age. Then a late age (greater than 28-days) model was developed based on the predicted optimum SO3 content of 28-days and late age. Eight developed models were built for all
... Show More