Global technological advancements drive daily energy consumption, generating additional carbon-induced climate challenges. Modifying process parameters, optimizing design, and employing high-performance working fluids are among the techniques offered by researchers for improving the thermal efficiency of heating and cooling systems. This study investigates the heat transfer enhancement of hybrid “Al2O3-Cu/water” nanofluids flowing in a two-dimensional channel with semicircle ribs. The novelty of this research is in employing semicircle ribs combined with hybrid nanofluids in turbulent flow regimes. A computer modeling approach using a finite volume approach with k-ω shear stress transport turbulence model was used in these simu
... Show MoreThe sensitivity of SnO2 nanoparticles/reduced graphene oxide hybrid to NO2 gas is discussed in the present work using density functional theory (DFT). The SnO2 nanoparticles shapes are taken as pyramids, as proved by experiments. The reduced graphene oxide (rGO) edges have oxygen or oxygen-containing functional groups. However, the upper and lower surfaces of rGO are clean, as expected from the oxide reduction procedure. Results show that SnO2 particles are connected at the edges of rGO, making a p-n heterojunction with a reduced agglomeration of SnO2 particles and high gas sensitivity. The DFT results are in
A bolted–welded hybrid demountable shear connector for use in deconstructable steel–concrete composite buildings and bridges was proposed. The hybrid connector consisted of a partially threaded stud, which was welded on the flange of a steel section, and a machined steel tube with compatible geometry, which was bolted on the stud. Four standard pushout tests according to Eurocode 4 were carried out to assess the shear performance of the hybrid connector. The experimental results show that the initial stiffness, shear resistance, and slip capacity of the proposed connector were higher than those of traditional welded studs. The hybrid connector was a ductile connector, according to Eurocode 4, with slip capacity higher than 6 mm. A nonli
... Show MoreNon uniform channelization is a crucial task in cognitive radio receivers for obtaining separate channels from the digitized wideband input signal at different intervals of time. The two main requirements in the channelizer are reconfigurability and low complexity. In this paper, a reconfigurable architecture based on a combination of Improved Coefficient Decimation Method (ICDM) and Coefficient Interpolation Method (CIM) is proposed. The proposed Hybrid Coefficient Decimation-Interpolation Method (HCDIM) based filter bank (FB) is able to realize the same number of channels realized using (ICDM) but with a maximum decimation factor divided by the interpolation factor (L), which leads to less deterioration in stop band at
... Show More