This study sought to investigate the impacts of big data, artificial intelligence (AI), and business intelligence (BI) on Firms' e-learning and business performance at Jordanian telecommunications industry. After the samples were checked, a total of 269 were collected. All of the information gathered throughout the investigation was analyzed using the PLS software. The results show a network of interconnections can improve both e-learning and corporate effectiveness. This research concluded that the integration of big data, AI, and BI has a positive impact on e-learning infrastructure development and organizational efficiency. The findings indicate that big data has a positive and direct impact on business performance, including Big Data External and Internal, Innovative Usage, Indexing, and Sources Accuracy. In addition, Artificial intelligence positively affects business performance, including Data Accuracy, Data Transparency, Data Speed, and Creative Thinking and Learning. Moreover, business intelligence has a direct and positive impact on business performance, including Data Warehouse, Data Mining, Business Process Management, and Competitive Intelligence. In addition, the findings indicate that e-learning which represents system quality, information quality, and self-efficacy has a positive relationship on enhancing business performance. Interestingly, the present findings are inconsistent with those of previous studies showing the variables of interest which have no effect on e-learning and business performance. Taken together, the findings of this study suggest that firms should begin to apply processes related with applying e-learning and developing business performance. The novelty of the present study lies in highlighting the key dimensions of big data, artificial intelligence, and business intelligence when it comes to enhancing e-learning and business performance at Jordanian telecommunications industry.
The modern systems that have been based upon the hash function are more suitable compared to the conventional systems; however, the complicated algorithms for the generation of the invertible functions have a high level of time consumption. With the use of the GAs, the key strength is enhanced, which results in ultimately making the entire algorithm sufficient. Initially, the process of the key generation is performed by using the results of n-queen problem that is solved by the genetic algorithm, with the use of a random number generator and through the application of the GA operations. Ultimately, the encryption of the data is performed with the use of the Modified Reverse Encryption Algorithm (MREA). It was noticed that the
... Show MorePurpose: the purpose of this study is to investigate how managers working for the General Authority for Irrigation and Reclamation Projects react to the impact of Emotional Intelligence (EI) on their performance. Theoretical framework: The current study includes an intellectual framework on two variables, namely EI and Manager Performance (MP), because it is essential to investigate the relationship between these two variables and the impact of EI on MP. Design/methodology/approach: The research problem is that a manager's capacity to make wise decisions about their work or interactions with subordinates is diminished when they have inadequate EI. The questionnaire is used as a tool for gathering data for the study, and the st
... Show MoreIt is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i
... Show MoreAbstract :
The present study aims at identifying the status of the two research variables in the organization under study and specifying the relationship and impact of the authentic leadership with all its four branch dimensions of (self-awareness, transparent relations, balanced processing of information and the moral perspective) on business process reengineering.
The basic problem of the study lies in the attempt to present a new leadership style that is more responsive to the dynamic changes surrounding it based on the authentic leadership behaviors. This is because this pattern has an impact on the nature of the organization's work and its progress.
The research
... Show Moreتحليل الشراكات التجارية للعراق 2003-2013
The dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show MoreThis paper presents a robust algorithm for the assessment of risk priority for medical equipment based on the calculation of static and dynamic risk factors and Kohnen Self Organization Maps (SOM). Four risk parameters have been calculated for 345 medical devices in two general hospitals in Baghdad. Static risk factor components (equipment function and physical risk) and dynamics risk components (maintenance requirements and risk points) have been calculated. These risk components are used as an input to the unsupervised Kohonen self organization maps. The accuracy of the network was found to be equal to 98% for the proposed system. We conclude that the proposed model gives fast and accurate assessment for risk priority and it works as p
... Show MoreThis study assesses the short-term and long-term interactions between firm performance, financial education and political instability in the case of Malaysia Small to Medium Enterprises (SMEs). The simultaneous insertion of financial education and political instability within the study is done intentionally to inspect the effect of these two elements in one equation for the Malaysian economy. Using the bound testing methodology for cointegration and error correction models, advanced within an autoregressive distributed lag (ARDL) framework, we examine whether a long-run equilibrium connection survives between firm performance and the above mentioned independent variables. Using this method, we uncover evidence of a positive long-term link b
... Show More