This study sought to investigate the impacts of big data, artificial intelligence (AI), and business intelligence (BI) on Firms' e-learning and business performance at Jordanian telecommunications industry. After the samples were checked, a total of 269 were collected. All of the information gathered throughout the investigation was analyzed using the PLS software. The results show a network of interconnections can improve both e-learning and corporate effectiveness. This research concluded that the integration of big data, AI, and BI has a positive impact on e-learning infrastructure development and organizational efficiency. The findings indicate that big data has a positive and direct impact on business performance, including Big Data External and Internal, Innovative Usage, Indexing, and Sources Accuracy. In addition, Artificial intelligence positively affects business performance, including Data Accuracy, Data Transparency, Data Speed, and Creative Thinking and Learning. Moreover, business intelligence has a direct and positive impact on business performance, including Data Warehouse, Data Mining, Business Process Management, and Competitive Intelligence. In addition, the findings indicate that e-learning which represents system quality, information quality, and self-efficacy has a positive relationship on enhancing business performance. Interestingly, the present findings are inconsistent with those of previous studies showing the variables of interest which have no effect on e-learning and business performance. Taken together, the findings of this study suggest that firms should begin to apply processes related with applying e-learning and developing business performance. The novelty of the present study lies in highlighting the key dimensions of big data, artificial intelligence, and business intelligence when it comes to enhancing e-learning and business performance at Jordanian telecommunications industry.
The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals
... Show MoreThe data presented in this paper are related to the research article entitled “Novel dichloro(bis{2-[1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl-κN3 ]pyridine-κN})metal(II) coordination compounds of seven transition metals (Mn, Fe, Co, Ni, Cu, Zn and Cd)” (Conradie et al., 2018) [1]. This paper presents characterization and structural data of the 2-(1-(4-methyl-phenyl)-1H-1,2,3-triazol-1-yl)pyridine ligand (L2 ) (Tawfiq et al., 2014) [2] as well as seven dichloro(bis{2- [1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl-κN3 ]pyridine-κN})metal (II) coordination compounds, [M(L2 )2Cl2], all containing the same ligand but coordinated to different metal ions. The data illustrate the shift in IR, UV/VIS, and NMR (for diamagnetic complexes) peaks wh
... Show MoreThis research includes structure interpretation of the Yamama Formation (Lower Cretaceous) and the Naokelekan Formation (Jurassic) using 2D seismic reflection data of the Tuba oil field region, Basrah, southern Iraq. The two reflectors (Yamama and Naokelekan) were defined and picked as peak and tough depending on the 2D seismic reflection interpretation process, based on the synthetic seismogram and well log data. In order to obtain structural settings, these horizons were followed over all the regions. Two-way travel-time maps, depth maps, and velocity maps have been produced for top Yamama and top Naokelekan formations. The study concluded that certain longitudinal enclosures reflect anticlines in the east and west of the study ar
... Show MoreElectrochemical oxidation in the presence of sodium chloride used for removal of phenol and any other organic by products formed during the electrolysis by using MnO2/graphite electrode. The performance of the electrode was evaluated in terms fraction of phenol and the formed organic by products removed during the electrolysis process. The results showed that the electrochemical oxidation process was very effective in the removal of phenol and the other organics, where the removal percentage of phenol was 97.33%, and the final value of TOC was 6.985 ppm after 4 hours and by using a speed of rotation of the MnO2 electrode equal to 200 rpm.
The cost-effective carbon cross-linked Y zeolite nanocrystals composite (NYC) was prepared using an eco-friendly substrate prepared from bio-waste and organic adhesive at intermediate conditions. The green synthesis method dependent in this study assures using chemically harmless compounds to ensure homogeneous distribution of zeolite over porous carbon. The greenly prepared cross-linked composite was extensively characterized using Fourier transform infrared, nitrogen adsorption/desorption, Field emission scanning electron microscope, Dispersive analysis by X-ray, Thermogravimetric analysis, and X-ray diffraction. NYC had a surface area of 176.44 m2/g, and a pore volume of 0.0573 cm3/g. NYC had a multi-function nature, sustained at a long-
... Show MoreDBN Rashid, IMPAT: International Journal of Research in Humanities, Arts, and Literature, 2016 - Cited by 5
The sound effects in TV dramas achievements have become very important not only in terms of function and implementation, but at a greater and wider level in terms of artistic and aesthetic values, which are produced and employed in the most important world artistic achievements of drama, using the latest and most prominent technologies and equipment and according to the expressive and dramatic values expressed by these modern digital sound effects. Therefore, the researcher chose the aesthetic effect of digital sound effects in television drama to identify the aesthetic aspects provided by digital sound effects by employing them and their accompaniment for the image.
The researcher, therefor, divided this study into the methodolo
... Show MoreStubbornness is of the nature of the mean, we do not see it in the character of a person whose heart God filled with faith, wisdom and knowledge. And stubbornness does not fall into it except hearts that are arrogant, envious and objectionable, hearts that do not admit mistakes, and are not satisfied with the truth. Rather, you see humiliation,humiliation and shortcomings in returning to Him. He loves corruption * Except in humiliation, humiliation and shortcomings, the stubborn fall, even if they are proud when it is said to him, "Beware of God", pride takes him for sin, so his count is Hell, and his misery.
traces of stubbornness :key wor
... Show MoreThis paper describes a practical study on the impact of learning's partners, Bluetooth Broadcasting system, interactive board, Real – time response system, notepad, free internet access, computer based examination, and interaction classroom, etc, had on undergraduate student performance, achievement and involving with lectures. The goal of this study is to test the hypothesis that the use of such learning techniques, tools, and strategies to improve student learning especially among the poorest performing students. Also, it gives some kind of practical comparison between the traditional way and interactive way of learning in terms of lectures time, number of tests, types of tests, student's scores, and student's involving with lectures
... Show MoreThe successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show More