Infrared photoconductive detectors working in the far-infrared region and room temperature were fabricated. The detectors were fabricated using three types of carbon nanotubes (CNTs); MWCNTs, COOH-MWCNTs, and short-MWCNTs. The carbon nontubes suspension is deposited by dip coating and drop–casting techniques to prepare thin films of CNTs. These films were deposited on porous silicon (PSi) substrates of n-type Si. The I-V characteristics and the figures of merit of the fabricated detectors were measured at a forward bias voltage of 3 and 5 volts as well as at dark and under illumination by IR radiation from a CO2 laser of 10.6 μm wavelengths and power of 2.2 W. The responsivity and figures of merit of the photoconductive detector are improved by coating the MWCNTs films with a thin layer of a blend (polyaniline - polymethyl methacrylate) polymer with methylene blue dye. The coated MWCNTs films showed better performances, so this type of coating can be considered as a surface treatment of the detector film, which highly increased the responsivity and specific detectivity of the fabricated IR laser detector-based MWCNTs. The photocurrent response for the coated films was increased about 25 times than that for uncoated films. The results proved the role of the polymer in the enhancement of the performance of the IR photoconductive detectors. Keywords: Carbon nanotubes, Infrared detector, Polyaniline polymer, Polymethyl methacrylate polymer, Methyl Blue dye.
In this research, nanofibers have been prepared by using an electrospinning method. Three types of polymer (PVA, VC, PMMA) have been used with different concentration. The applied voltage and the gap length were changed. It was observed that VC is the best polymer than the other types of polymers.
by in situ polymerization of aniline monomer, conducting polyaniline (PANI) nanocomposites containing various concentrations of carboxylic acid functionalized multi-walled carbon nanotubes (f-MWCNT) were synthesized. The morphological and electrical properties of pure PANI and PANI /MWCNT nanocomposites were examined by using Fourier transform- infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Atomic Force Microscopy (AFM) respectively. FTIR spectra shows that the carboxylic acid groups formed at the both ends of the sidewalls of the MWCNTs. The aniline monomers were polymerized on the surface of MWCNTs, depending on the -* electron interaction between aniline monomers and MWCNTs and hydrogen bonding into interaction between t
... Show MoreGeographic Information Systems (GIS) are obtaining a significant role in handling strategic applications in which data are organized as records of multiple layers in a database. Furthermore, GIS provide multi-functions like data collection, analysis, and presentation. Geographic information systems have assured their competence in diverse fields of study via handling various problems for numerous applications. However, handling a large volume of data in the GIS remains an important issue. The biggest obstacle is designing a spatial decision-making framework focused on GIS that manages a broad range of specific data to achieve the right performance. It is very useful to support decision-makers by providing GIS-based decision support syste
... Show MoreWe demonstrate a behavior of laser pulse grows through fiber laser inside and output cavity with a soliton fiber laser based on the multi-wall carbon nanotube saturable absorber (SA), we investigate the effects of a saturable absorber parameter on the mode-locking of a realistic Erbium fiber ring laser. Generalized nonlinear Schrodinger equation including the nonlinear effects as gain dispersion, second anomalous group velocity dispersion (GVD), self phase modulation (SPM), and two photon absorption used to describe pulse evolution. An analytical method has been used to understand and to quantify the role of the SA parameter on the propagation dynamics of pulse laser. We compute the chirp, power, width and phase of the soliton for range
... Show MoreDue to the urgent need to develop technologies for continuous glucose monitoring in diabetes individuals, poten tial research has been applied by invoking the microwave tech niques. Therefore, this work presents a novel technique based on a single port microwave circuit, antenna structure, based on Metamaterial (MTM) transmission line defected patch for sensing the blood glucose level in noninvasive process. For that, the proposed antenna is invoked to measure the blood glu cose through the field leakages penetrated to the human blood through the skin. The proposed sensor is constructed from a closed loop connected to an interdigital capacitor to magnify the electric field fringing at the patch center. The proposed an tenna sensor i
... Show MoreThe adsorption behavior of Bismarck brown (BB) dye from aqueous solutions onto graphene oxide GO and graphene oxide-g-poly (n-butyl methacrylate-co-methacrylic acid) GO-g-pBCM as adsorbents was investigated. The prepared GO and GO-g-pBCM were characterized by Fourier transform infrared spectroscopy FTIR, which confirmed the compositions of the prepared adsorbents. Adsorption of BB dye onto GO and GO-g-pBCM was explored in a series of batch experiments under various conditions. The data were examined utilizing Langmuir and Freundlich isotherms. The Langmuir isotherm was seen as increasingly reasonable from the experimental information of dye on formulating adsorbents. Kinetic investigations showed that the experimental data were fitted ve
... Show MoreOne of the most popular and legally recognized behavioral biometrics is the individual's signature, which is used for verification and identification in many different industries, including business, law, and finance. The purpose of the signature verification method is to distinguish genuine from forged signatures, a task complicated by cultural and personal variances. Analysis, comparison, and evaluation of handwriting features are performed in forensic handwriting analysis to establish whether or not the writing was produced by a known writer. In contrast to other languages, Arabic makes use of diacritics, ligatures, and overlaps that are unique to it. Due to the absence of dynamic information in the writing of Arabic signatures,
... Show MoreDocument source identification in printer forensics involves determining the origin of a printed document based on characteristics such as the printer model, serial number, defects, or unique printing artifacts. This process is crucial in forensic investigations, particularly in cases involving counterfeit documents or unauthorized printing. However, consistent pattern identification across various printer types remains challenging, especially when efforts are made to alter printer-generated artifacts. Machine learning models are often used in these tasks, but selecting discriminative features while minimizing noise is essential. Traditional KNN classifiers require a careful selection of distance metrics to capture relevant printing
... Show MoreChitosan (CH) / Poly (1-vinylpyrrolidone-co-vinyl acetate) (PVP-co-VAc) blend (1:1) and nanocomposites reinforced with CaCO3 nanoparticles were prepared by solution casting method. FTIR analysis, tensile strength, Elongation, Young modulus, Thermal conductivity, water absorption and Antibacterial properties were studied for blend and nanocomposites. The tensile results show that the tensile strength and Young’s modulus of the nanocomposites were enhanced compared with polymer blend [CH/(PVP-co-VAc)] film. The mechanical properties of the polymer blend were improved by the addition of CaCO3 with significant increases in Young’s modulus (from 1787 MPa to ~7238 MPa) and tensile strength (from 47.87 MPa to 79.75 MPa). Strong interfacial
... Show More