Preferred Language
Articles
/
DhYV5osBVTCNdQwCJOS7
Far Infrared Laser Detector Based on Multi-Walled Carbon Nanotubes and Blend of (Polyaniline - Polymethyl Methacrylate) Polymers with Methyl Blue Dye for Photoconductive Applications
...Show More Authors

Infrared photoconductive detectors working in the far-infrared region and room temperature were fabricated. The detectors were fabricated using three types of carbon nanotubes (CNTs); MWCNTs, COOH-MWCNTs, and short-MWCNTs. The carbon nontubes suspension is deposited by dip coating and drop–casting techniques to prepare thin films of CNTs. These films were deposited on porous silicon (PSi) substrates of n-type Si. The I-V characteristics and the figures of merit of the fabricated detectors were measured at a forward bias voltage of 3 and 5 volts as well as at dark and under illumination by IR radiation from a CO2 laser of 10.6 μm wavelengths and power of 2.2 W. The responsivity and figures of merit of the photoconductive detector are improved by coating the MWCNTs films with a thin layer of a blend (polyaniline - polymethyl methacrylate) polymer with methylene blue dye. The coated MWCNTs films showed better performances, so this type of coating can be considered as a surface treatment of the detector film, which highly increased the responsivity and specific detectivity of the fabricated IR laser detector-based MWCNTs. The photocurrent response for the coated films was increased about 25 times than that for uncoated films. The results proved the role of the polymer in the enhancement of the performance of the IR photoconductive detectors. Keywords: Carbon nanotubes, Infrared detector, Polyaniline polymer, Polymethyl methacrylate polymer, Methyl Blue dye.

Clarivate Crossref
View Publication
Publication Date
Sat Aug 23 2025
Journal Name
Journal Of Kufa For Chemical Sciences
Nanogold-Bound Copper Complexes and Their Various Applications: A Review Article
...Show More Authors

View Publication
Publication Date
Sat Dec 31 2022
Journal Name
Al-kindy College Medical Journal
Molecular Microbiology in Clinical Practice: Current and Future Applications: Molecular Microbiology
...Show More Authors

Technological advances have yielded new molecular biology-based methods for the diagnosis of infectious diseases.  The newest and most powerful molecular diagnostic tests are available at regional and national reference laboratories, as well as at specialized centers that are certified to conduct metagenomic testing.  Metagenomic assays utilize advances in DNA extraction technology, DNA sequence library construction, high throughput DNA sequencing and automated data analysis to identify millions of individual strands of DNA extracted from clinical samples.  At present, metagenomic assays are only possible at a small number of special research, academic and commercial laboratories.  Continued research in human and path

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Apr 30 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
SMS Spam Detection Based on Fuzzy Rules and Binary Particle Swarm Optimization
...Show More Authors

View Publication
Scopus (10)
Crossref (5)
Scopus Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Human Face Recognition Based on Local Ternary Pattern and Singular Value Decomposition
...Show More Authors

There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Fast Shot Boundary Detection Based on Separable Moments and Support Vector Machine
...Show More Authors

View Publication
Scopus (24)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Tue Oct 25 2022
Journal Name
Minar Congress 6
HANDWRITTEN DIGITS CLASSIFICATION BASED ON DISCRETE WAVELET TRANSFORM AND SPIKE NEURAL NETWORK
...Show More Authors

In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database

View Publication Preview PDF
Publication Date
Mon Apr 15 2024
Journal Name
Journal Of Engineering Science And Technology
Text Steganography Based on Arabic Characters Linguistic Features and Word Shifting Method
...Show More Authors

In the field of data security, the critical challenge of preserving sensitive information during its transmission through public channels takes centre stage. Steganography, a method employed to conceal data within various carrier objects such as text, can be proposed to address these security challenges. Text, owing to its extensive usage and constrained bandwidth, stands out as an optimal medium for this purpose. Despite the richness of the Arabic language in its linguistic features, only a small number of studies have explored Arabic text steganography. Arabic text, characterized by its distinctive script and linguistic features, has gained notable attention as a promising domain for steganographic ventures. Arabic text steganography harn

... Show More
Publication Date
Sat Jul 01 2023
Journal Name
Int. J. Advance Soft Compu. Appl,
Arabic and English Texts Encryption Using Proposed Method Based on Coordinates System
...Show More Authors

Preview PDF
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Arabic Speech Classification Method Based on Padding and Deep Learning Neural Network
...Show More Authors

Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to

... Show More
View Publication Preview PDF
Scopus (18)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Dec 31 2023
Journal Name
Iraqi Journal Of Information And Communication Technology
EEG Signal Classification Based on Orthogonal Polynomials, Sparse Filter and SVM Classifier
...Show More Authors

This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it

... Show More
View Publication Preview PDF
Crossref (2)
Crossref