The impact of exposure to different sizes of particulate matter (PM1, PM2.5, PM7, and PM10) was evaluated in Babylon concrete plant workers who had been exposed to concrete dust for at least 10 years. The effects of these particles on the hematological parameters, malondialdehyde (MDA) levels, and antioxidant enzymes (catalase and glutathione peroxidase ) were examined. The results exhibited that the levels of PM2.5 and PM10 were higher than the acceptable limits approved by the National Ambient Air Quality Standards (NAAQS). The blood parameters, namely white blood cells (WBC), red blood cell (RBC) and platelets counts, demonstrated non-significant differences between workers exposed to the PM as compared to the control group. However, differentiated white blood cells count revealed a significant increase of polymorphonuclear leukocytes (PMN) in exposed workers in comparison with the control group. However, both MDA and glutathione peroxidase showed a highly significant increase in the workers ass compared to the control group. Thus, we may conclude that the concrete plant workers are exposed to a higher risk of oxidative stress that could lead to alterations in hematological parameters, enzymatic activities, and MDA level.
The aim of this research was to study the concentrations of Uranium in the phosphorus fertilizers using Nuclear track detector (CR-39). Our present investigation is based on the study of 10 types samples for different kinds of phosphorus fertilizers which were available in the local market Some of them were Iraqi made and the others from different countries like, (Iran, Italy, Holland, Lebanon and Jordan) .. The result obtained shows that the Uranium concentration in phosphorus fertilizers samples varies from (3.59ppm) to(2.59ppm). Based on the radioactive concentration of Uranium in the samples all the results obtained between(3.59ppm) in the Iraqi super phosphate to (2.59ppm) in the mixture Iraqi phosphate fertilizer are withi
... Show MoreAbstract: Persian literature, after the spread of Islam in Pars, received a lot of influence from the subtle and rhetorical details of the Holy Quran. This effect is more in poetry than in prose because the weights of Persian poetry are closer to the melody of the Qur'an and its weights.The effectiveness of most of the prose works is only in the Quranic themes and words. Persian poetry that has benefited from various sciences of rhetoric, including semantics, eloquence and rhetoric. The degree and manner of influence of each of the didactic, lyrical, epic and travelogue literary types is different from the rhetorical points of the Quran. The instructions under educational literature have benefited the least from Quranic rhetoric. The max
... Show MoreThe densities and visconsities of solutions of poly(vinyl alcohol)(PVA) molccuar weight (14)kg.mol-1in water up to 0.035%mol.kg-1
In this paper, we will study non parametric model when the response variable have missing data (non response) in observations it under missing mechanisms MCAR, then we suggest Kernel-Based Non-Parametric Single-Imputation instead of missing value and compare it with Nearest Neighbor Imputation by using the simulation about some difference models and with difference cases as the sample size, variance and rate of missing data.
Future wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date ve
... Show MoreDue to the huge variety of 5G services, Network slicing is promising mechanism for dividing the physical network resources in to multiple logical network slices according to the requirements of each user. Highly accurate and fast traffic classification algorithm is required to ensure better Quality of Service (QoS) and effective network slicing. Fine-grained resource allocation can be realized by Software Defined Networking (SDN) with centralized controlling of network resources. However, the relevant research activities have concentrated on the deep learning systems which consume enormous computation and storage requirements of SDN controller that results in limitations of speed and accuracy of traffic classification mechanism. To fill thi
... Show More