In this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.
Stress is an inevitable part of life. Stress occurs when stressful events of self, environmental, or social origin affect the individual's resilience and threaten to collapse his psychological and physical systems. The stress represents difficulties and obstacles that may exceed the individual's ability to bear them and deal with them, which causes him stress and causes negative effects on his psychological and physical health. Therefore, the current research aimed to identify the negative effects of psychological stress on the psychological and physical health of the individual through the literature that dealt with this topic. It was among the results of the research that one of the negative effects of stresses on mental health is the
... Show MoreThe primary objective of this paper, is to introduce eight types of topologies on a finite digraphs and state the implication between these topologies. Also we used supra open digraphs to introduce a new types for approximation rough digraphs.
In this thesis, we introduce eight types of topologies on a finite digraphs and state the implication between these topologies. Also we studied some pawlak's concepts and generalization rough set theory, we introduce a new types for approximation rough digraphs depending on supra open digraphs. In addition, we present two various standpoints to define generalized membership relations, and state the implication between it, to classify the digraphs and help for measure exactness and roughness of digraphs. On the other hand, we define several kinds of fuzzy digraphs. We also introduce a topological space, which is induced by reflexive graph and tolerance graphs, such that the graph may be infinite. Furthermore, we offered some properties of th
... Show MoreIn this paper, the Monte-Carlo simulation method was used to compare the robust circular S estimator with the circular Least squares method in the case of no outlier data and in the case of the presence of an outlier in the data through two trends, the first is contaminant with high inflection points that represents contaminant in the circular independent variable, and the second the contaminant in the vertical variable that represents the circular dependent variable using three comparison criteria, the median standard error (Median SE), the median of the mean squares of error (Median MSE), and the median of the mean cosines of the circular residuals (Median A(k)). It was concluded that the method of least squares is better than the
... Show MoreA particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
Document source identification in printer forensics involves determining the origin of a printed document based on characteristics such as the printer model, serial number, defects, or unique printing artifacts. This process is crucial in forensic investigations, particularly in cases involving counterfeit documents or unauthorized printing. However, consistent pattern identification across various printer types remains challenging, especially when efforts are made to alter printer-generated artifacts. Machine learning models are often used in these tasks, but selecting discriminative features while minimizing noise is essential. Traditional KNN classifiers require a careful selection of distance metrics to capture relevant printing
... Show MoreWith the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch