In the present work, HgBa2Can-1CunO2n+2+δ superconducting thin films with (100) nm thickness were (n=1, 2 and 3) prepared by Pulsed Laser Deposition technique on glass substrate at R.T (300) K, have been synthesize. The effect of Cu content on the structural, surface morphology, optical and electrical properties of HgBa2Can-1CunO2n+2+δ films were investigated and analyzed. The results of XRD analysis show that all samples are polycrystalline structure with orthorhombic phase, the change of Cu concentration in samples produce changes in the mass density, lattice parameter and the ratio (c/a). AFM techniques were used to examine the surface morphology of HgBa2Can-1CunO2n+2+δ superconducting films, the study showed the values of surface roughness, average diameter, and Root Mean Square exhibit a change with increasing Cu content in the sample. The optical properties of these films within the wavelengths (300-1100) nm were studied and calculate the optical constants ,the estimated energy gap found to be about (2.3, 1.8 and 2.45) eV when the Cu content in samples (n=1, 2 and 3) respectively. The electrical properties of prepared films confirm p-type nature. The electrical resistively of films prepared at different Cu content found to be in range of (8.060 E+1- 6.393E+4 Ω.cm) at room temperature (R.T).
Objectives Dental implant is a revolution in dentistry; some shortages are still a focus of research. This study use long duration of radiofrequency (RF)–magnetron sputtering to coat titanium (Ti) implant with hydroxyapatite (HA) to obtain a uniform, strongly adhered in a few micrometers in thickness. Materials and Methods Two types of substrates, discs and root form cylinders were prepared using a grade 1 commercially pure (CP) Ti rod. A RF–magnetron sputtering device was used to coat specimens with HA. Magnetron sputtering was set at 150 W for 22 hours at 100°C under continuous argon gas flow and substrate rotation at 10 rpm. Coat properties were evaluated via field emission scanning electron microscopy (FESEM), scanning electro
... Show MoreDifferent methods can be used to remove tissue during gingivectomy and produce a good gingival margin, the most common is the conventional gingivectomy which is done by the use of scalpel, now a day’s Laser is widely spread and can be used to perform surgeries. Materials and methods: 50 patients divided into two equal groups, Group 1 gingivectomy was done by Diode Laser, Group 2 gingivectomy was done by scalpel, plaque and gingival index were measured at 1st, 2nd and 3rd visit, swab were taken and sent foe detecting bacterial growth and biopsy were taken for histopathological examination. Group 1 show no significant differences in plaque and gingival means between the visits, the bacteriological examination showed no growth of bact
... Show MoreBackground: different methods can be used to remove tissue during gingivectomy and produce a good gingival margin, the most common is the conventional gingivectomy which is done by the use of scalpel, now a day’s Laser is widely spread and can be used to perform surgeries. Materials and methods: 50 patients divided into two equal groups, Group 1 gingivectomy was done by Diode Laser, Group 2 gingivectomy was done by scalpel, plaque and gingival index were measured at 1st, 2nd and 3rd visit, swab were taken and sent foe detecting bacterial growth and biopsy were taken for histopathological examination. Group 1 show no significant differences in plaque and gingival means between the visits, the bacteriological examination showed no growth of
... Show MoreDue to restrictions and limitations on agricultural water worldwide, one of the most effective ways to conserve water in this sector is to reduce the water losses and improve irrigation uniformity. Nowadays, the low-pressure sprinkler has been widely used to replace the high-pressure impact sprinklers in lateral move sprinkler irrigation systems due to its low operating cost and high efficiency. However, the hazard of surface runoff represents the biggest obstacle for low-pressure sprinkler systems. Most researchers have used the pulsing technique to apply variable-rate irrigation to match the crop water needs within a normal application rate that does not produce runoff. This research introduces a variable pulsed irrigation algorit
... Show MoreThe low-pressure sprinklers have been widely used to replace the high-pressure impact sprinklers in the lateral move sprinkler irrigation system due to its low operating cost and high efficiency. However, runoff losses under the low-pressure sprinkler irrigation machine can be significant. This study aims to evaluate the performance of the variable pulsed irrigation algorithm (VPIA) in reducing the runoff losses under low-pressure lateral move sprinkler irrigation machine for three different soil types. The VPIA uses the ON-OFF pulsing technique to reduce the runoff losses by controlling the number and width of the pulses considering the soil and the irrigation machine properties. Als
The synchronization of a complex network with optoelectronic feedback has been introduced theoretically, with use of 2×2 oscillators network; each oscillator considered is an optocoupler (LED coupled with photo-detector). Fixing the bias current (δ) and increasing the feedback strength (Ԑ) of each oscillator, the dynamical sequence like chaotic and periodic mixed mode oscillations has been observed. Synchronization of unidirectionally coupled of light emitting diodes network has been featured when coupling strength equal to 1.7×10-4. The transition between non-synchronization and synchronization states by means of the spatio-temporal distribution has been investigated.
Glassy carbon electrode (GCE) was modified with carbon nanotubes CNT and C60 by attachment and solution evaporation techniques, respectively. CNT/Li+/GCE and C60/Li+/GCE were prepared by modifying CNT/GCE and C60/GCE in Li+ solution via cyclic voltammetry (CV) potential cycling. The sensing characteristics of the modified film electrodes, demonstrated in this study for interference of Mn2+ in different heavy metals ion esp. Hg2+, Cd2+ and Cu2+. The interfering effect was investigated that exert positive interference on the redox peaks of Mn2+. The modification of GCE with nano materials and Li+ act an enhancement for the redox current peaks to observe the effect of interference for Mn2+ in 1:1 ratio with different heavy metals ion.