Preferred Language
Articles
/
DRYvu4sBVTCNdQwCINmM
Watermarking in Medical Image
...Show More Authors

Medical image security is possible using digital watermarking techniques. Important information is included in a host medical image in order to provide integrity, consistency, and authentication in the healthcare information system. This paper introduces a proposed method for embedding invisible watermarking in the 3D medical image. The cover medical image used is DICOM which consists of a number of slices, each one representing a sense, firstly must separate the ROI (Region of Interest) and NROI (Not Region Of Interest) for each slice, the separation process performed by the particular person who selected by hand the ROI. The embedding process is based on a key generated from Arnold's chaotic map used as the position of a pixel in the slices with the highest saturation for embedding a secret message in the NROI because the ROI contains the information of the ill, so it cannot be modified. The evaluation of the proposed method using PSNR and MSE shows good results according to both requirements of the watermark system, the invisibility and quality of the watermarked medical image where the PSNR value is up to 43.3936 and MSE is up to 0.000041.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Feb 01 2020
Journal Name
International Journal Of Computer Science And Mobile Computing
Hierarchical Fixed Prediction of Mixed based for Medical Image Compression.
...Show More Authors

Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Estimation of kidney tumor volume in CT images using medical image segmentation techniques
...Show More Authors

Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 08 2021
Journal Name
J. Inf. Hiding Multim. Signal Process.
Predication of Most Significant Features in Medical Image by Utilized CNN and Heatmap.
...Show More Authors

The growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co

... Show More
View Publication Preview PDF
Scopus (3)
Scopus
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation
...Show More Authors

Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Crossref
Publication Date
Mon Nov 21 2022
Journal Name
Sensors
Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets
...Show More Authors

Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes

... Show More
View Publication
Scopus (30)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Tue Jan 17 2023
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
An Image Feature Extraction to Generate a Key for Encryption in Cyber Security Medical Environments
...Show More Authors

Cyber security is a term utilized for describing a collection of technologies, procedures, and practices that try protecting an online environment of a user or an organization. For medical images among most important and delicate data kinds in computer systems, the medical reasons require that all patient data, including images, be encrypted before being transferred over computer networks by healthcare companies. This paper presents a new direction of the encryption method research by encrypting the image based on the domain of the feature extracted to generate a key for the encryption process. The encryption process is started by applying edges detection. After dividing the bits of the edge image into (3×3) windows, the diffusions

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Jun 01 2014
Journal Name
International Journal Of Advanced Research In Computer Science And Software Engineering
Medical Image Compression using Wavelet Quadrants of Polynomial Prediction Coding & Bit Plane Slicing
...Show More Authors

Publication Date
Tue Jan 01 2019
Journal Name
Advances In Computational Intelligence And Robotics
Groupwise Non-Rigid Image Alignment Using Few Parameters: Registration of Facial and Medical Images
...Show More Authors

Groupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is eff

... Show More
View Publication
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
A Comprehensive Review on Medical Image Steganography Based on LSB Technique and Potential Challenges
...Show More Authors

The rapid development of telemedicine services and the requirements for exchanging medical information between physicians, consultants, and health institutions have made the protection of patients’ information an important priority for any future e-health system. The protection of medical information, including the cover (i.e. medical image), has a specificity that slightly differs from the requirements for protecting other information. It is necessary to preserve the cover greatly due to its importance on the reception side as medical staff use this information to provide a diagnosis to save a patient's life. If the cover is tampered with, this leads to failure in achieving the goal of telemedicine. Therefore, this work provides an in

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Fri Sep 01 2017
Journal Name
International Journal Of Engineering Research And Advanced Technology
. Medical Image Compression using Hybrid Technique of Wavelet Transformation and Seed Selective Predictive Method
...Show More Authors