Preferred Language
Articles
/
DIbesoYBIXToZYALwbLn
Prediction of impact force-time history in sandy soils
...Show More Authors

Scopus
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (11)
Crossref (6)
Scopus Crossref
Publication Date
Mon Dec 25 2017
Journal Name
Al-khwarizmi Engineering Journal
A new Cumulative Damage Model for Fatigue Life Prediction under Shot Peening Treatment
...Show More Authors

 Abstract

In this paper, fatigue damage accumulation were studied using many methods i.e.Corton-Dalon (CD),Corton-Dalon-Marsh(CDM), new non-linear model and experimental method. The prediction of fatigue lifetimes based on the two classical methods, Corton-Dalon (CD)andCorton-Dalon-Marsh (CDM), are uneconomic and non-conservative respectively. However satisfactory predictions were obtained by applying the proposed non-linear model (present model) for medium carbon steel compared with experimental work. Many shortcomings of the two classical methods are related to their inability to take into account the surface treatment effect as shot peening. It is clear that the new model shows that a much better and cons

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 24 2021
Journal Name
Ieee Access
Smart IoT Network Based Convolutional Recurrent Neural Network With Element-Wise Prediction System
...Show More Authors

An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to

... Show More
Scopus (12)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Tue Mar 01 2016
Journal Name
Journal Of Engineering
Prediction of Raw Water Turbidity at the Intakes of the Water Treatment Plants along Tigris River in Baghdad, Iraq using Frequency Analysis
...Show More Authors

Different frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al- Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah WTPs. As for Al-

... Show More
Publication Date
Tue Mar 01 2016
Journal Name
Journal Of Engineering
Prediction of Raw Water Turbidity at the Intakes of the Water Treatment Plants along Tigris River in Baghdad, Iraq using Frequency Analysis
...Show More Authors

Different frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit.  The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al-Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 31 2021
Journal Name
Iraqi Journal Of Laser
Experimental Study to The Effect of Applying Stressing Force on Etched Polarization Maintaining Fiber as Hybrid Fabry-Perot /Mach-Zehnder inline fiber interferometer
...Show More Authors

Abstract: The increased interest in developing new photonic devices that can support high data rates, high sensitivity and fast processing capabilities for all optical communications, motivates a pre stage pulse compressor research. The pre-stage research was based on cascading single mode fiber and polarization maintaining fiber to get pulse compression with compression factor of 1.105. The demand for obtaining more précised photonic devices; this work experimentally studied the behavior of Polarization maintaining fiber PMF that is sandwiched between two cascaded singe mode fiber SMF and fiber Bragg gratings FBG. Therefore; the introduced interferometer performed hybrid interference of both Mach-Zehnder

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2012
Journal Name
Iraqi Journal Of Physics
Power dissipation and time of breakdown in AC discharge of argon at a low pressure in the frequency range 5-10 kHz
...Show More Authors

The influence of 5-10 kHz audio frequency on the power dissipation in ac discharge of argon gas was studied experimentally, at pressures 50-80 mTorr and electrodes separation 10 cm (pd range 0.5-0.8 Torr.
cm). The measurements have shown that the discharge behavior in the ac circuit is equivalent to a series RC circuit. It is observed that the variation curve of discharge power P with the frequency f is approximately has a Gaussian shape. It is also observed that the curve of Pm- pd is the inverse of Paschen curve, where Pm is the maximum power in the frequency range. The time of breakdown is estimated from the curve of P- f.

View Publication Preview PDF
Publication Date
Fri Nov 01 2024
Journal Name
Current Medicinal Chemistry
Synthesis, In Silico Prediction, and In Vitro Evaluation of Anti-tumor Activities of Novel 4'-Hydroxybiphenyl-4-carboxylic Acid Derivatives as EGFR Allosteric Site Inhibitors
...Show More Authors
Introduction:

Allosteric inhibition of EGFR tyrosine kinase (TK) is currently among the most attractive approaches for designing and developing anti-cancer drugs to avoid chemoresistance exhibited by clinically approved ATP-competitive inhibitors. The current work aimed to synthesize new biphenyl-containing derivatives that were predicted to act as EGFR TK allosteric site inhibitors based on molecular docking studies.

Methods:

A new series of 4'-hydroxybiphenyl-4-carboxylic acid derivatives, including hydrazine-1-carbothioamide (S3-S6) and 1,2,4-triazole (S7-S10) derivatives, were synthesized and characterized using IR, 1HNMR, 13CNMR

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Deep Learning Techniques in the Cancer-Related Medical Domain: A Transfer Deep Learning Ensemble Model for Lung Cancer Prediction
...Show More Authors

Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
Study of water productivity of wheat and moisture distribution under the influence of center pivot irrigation and different tillage systems for desert soils
...Show More Authors

A field experiment was conducted to grow the wheat crop during the fall season 2020 in Karbala province, north of Ain Al-Tamr District in two locations of different textures and parent materials. The first site (calcareous soil) with a sandy loam texture, is located at (44° 40′ 37′) east longitude and (32° 41′ 34′) north latitude, at an altitude of 32 m above sea level, and an area of 20 hectares. As for the second location (gypsum soil) with a loam texture, it is located at a longitude (45° 41′ 39′) east and a latitude (33° 43′ 34′ north) and at an altitude of 33 m above sea level and an area of 20 hectares. To find out the effect of different tillage systems on water productivity and wheat yield under center pivot irri

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref