<p>Vehicular ad-hoc networks (VANET) suffer from dynamic network environment and topological instability that caused by high mobility feature and varying vehicles density. Emerging 5G mobile technologies offer new opportunities to design improved VANET architecture for future intelligent transportation system. However, current software defined networking (SDN) based handover schemes face poor handover performance in VANET environment with notable issues in connection establishment and ongoing communication sessions. These poor connectivity and inflexibility challenges appear at high vehicles speed and high data rate services. Therefore, this paper proposes a flexible handover solution for VANET networks by integrating SDN and fog computing (FC) technologies. The SDN provides global knowledge, programmability and intelligence functions for simplified and efficient network operation and management. FC, on the other hand, alleviates the core network pressure by providing real time computation and transmission functionalities at edge network to maintain the demands of delay sensitive applications. The proposed solution overcomes frequent handover challenges and reduces the processing overhead at core network. Moreover, the simulation evaluation shows significant handover performance improvement of the proposed solution compared to current SDN based schemes, especially in terms of handover latency and packet loss ratio under various simulation environments.</p>
Twelve compounds containing a sulphur- or oxygen-based heterocyclic core, 1,3- oxazole or 1,3-thiazole ring with hydroxy, methoxy and methyl terminal substituent, were synthesized and characterized. The molecular structures of these compounds were performed by elemental analysis and different spectroscopic tequniques. The liquid crystalline behaviors were studied by using hot-stage optical polarizing microscopy and differential scanning calorimetry. All compounds of 1,4- disubstituted benzene core with oxazole ring display liquid crystalline smectic A (SmA) mesophase. The compounds of 1,3- and 1,4-disubstituted benzene core with thiazole ring exhibit exclusively enantiotropic nematic liquid crystal phases.
This paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett
... Show MoreThis work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show MoreIdentifying the total number of fruits on trees has long been of interest in agricultural crop estimation work. Yield prediction of fruits in practical environment is one of the hard and significant tasks to obtain better results in crop management system to achieve more productivity with regard to moderate cost. Utilized color vision in machine vision system to identify citrus fruits, and estimated yield information of the citrus grove in-real time. Fruit recognition algorithms based on color features to estimate the number of fruit. In the current research work, some low complexity and efficient image analysis approach was proposed to count yield fruits image in the natural scene. Semi automatic segmentation and yield calculation of fruit
... Show MoreAlzheimer’s disease (AD) is an age-related progressive and neurodegenerative disorder, which is characterized by loss of memory and cognitive decline. It is the main cause of disability among older people. The rapid increase in the number of people living with AD and other forms of dementia due to the aging population represents a major challenge to health and social care systems worldwide. Degeneration of brain cells due to AD starts many years before the clinical manifestations become clear. Early diagnosis of AD will contribute to the development of effective treatments that could slow, stop, or prevent significant cognitive decline. Consequently, early diagnosis of AD may also be valuable in detecting patients with dementia who have n
... Show MoreThis research involves the synthesis of some sulphanyl benzimidazole derivatives (Ia-c), which were prepared from reaction of 2-mercaptobenzimidazole substituted benzyl halide, and structures were identified by spectral methods[FTIR, 1H-NMR and 13C-NMR].These compounds were investigated as corrosion inhibitors for carbon steel in 1M H2SO4 solution using weight loss, potentiostatic polarization methods; obtained results showed that the sulphanyl benzimidazole derivatives retard both cathodic and anodic reactions in acidic media, by virtue of adsorption on the carbon steel surface. This adsorption obeyed Langmuir’s adsorption isotherm. The inhibition efficiency of (Ia-c) ranging between (65-92) %. By using different Ib derivative conc
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show More