Preferred Language
Articles
/
D4akRIYBIXToZYALkYHi
Estimation of Mechanical Rock Properties from Laboratory and Wireline Measurements for Sandstone Reservoirs
...Show More Authors

Mechanical rock properties are essential to minimize many well problems during drilling and production operations. While these properties are crucial in designing optimum mud weights during drilling operations, they are also necessary to reduce the sanding risk during production operations. This study has been conducted on the Zubair sandstone reservoir, located in the south of Iraq. The primary purpose of this study is to develop a set of empirical correlations that can be used to estimate the mechanical rock properties of sandstone reservoirs. The correlations are established using laboratory (static) measurements and well logging (dynamic) data. The results support the evidence that porosity and sonic travel time are consistent indexes in determining the mechanical rock properties. Four correlations have been developed in this study which are static Young’s modulus, uniaxial compressive strength, internal friction angle, and static Poisson’s ratio with high performance capacity (determination coefficient of 0.79, 0.91, 0.73, and 0.78, respectively). Compared with previous correlations, the current local correlations are well-matched in determining the actual rock mechanical properties. Continuous profiles of borehole-rock mechanical properties of the upper sand unit are then constructed to predict the sand production risk. The ratio of shear modulus to bulk compressibility (G/Cb) as well as rock strength are being used as the threshold criterion to determine the sanding risks. The results showed that sanding risk or rock failure occurs when the rock strength is less than 7250 psi (50 MPa) and the ratio of G/Cb is less than 0.8*1012 psi2. This study presents a set of empirical correlations which are fewer effective costs for applications related to reservoir geomechanics.

Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Engineering And Sustainable Development
EVALUATION OF MECHANICAL PROPERTIES OF HIGH PERFORMANCE SELF-CONSOLIDATED CONCRETE ENHANCED BY DISCRETE STEEL AND POLYPROPYLENE FIBERS
...Show More Authors

High performance self-consolidating concrete HP-SCC is one of the most complex types of concrete which have the capacity to consolidated under its own weight, have excellent homogeneity and high durability. This study aims to focus on the possibility of using industrial by-products like Silica fumes SF in the preparation of HP-SCC enhanced with discrete steel fibers (DSF) and monofilament polypropylene fibers (PPF). From experimental results, it was found that using DSF with volume fraction of 0.50 %; a highly improvements were gained in the mechanical properties of HP-SCC. The compressive strength, splitting tensile strength, flexural strength and elastic modulus improved about 65.7 %, 70.5 %, 41.7 % and 80.3 % at 28 days age, respectively

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Petroleum Research And Studies
Modeling of Oil Viscosity for Southern Iraqi Reservoirs using Neural Network Method
...Show More Authors

The calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu

... Show More
View Publication
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Applied Sciences
Improvement of Mechanical Welding Properties by using Induced Harmonic Vibration
...Show More Authors

View Publication
Scopus (15)
Crossref (15)
Scopus Crossref
Publication Date
Sun Apr 08 2018
Journal Name
Al-khwarizmi Engineering Journal
Evaluation the Mechanical Properties of Kaolin Particulate Reinforced Epoxy Composites
...Show More Authors

Epoxy resin has many chemical features and mechanical properties, but it has a small elongation at break, low impact strength and crack propagation resistance, i.e. it exhibits a brittle behavior. In the current study, the influence of adding kaolin with variable particle size on the mechanical properties (flexural modulus E, toughness Gc, fracture toughness Kc, hardness HB, and Wear rate WR) of epoxy resin was evaluated. Composites of epoxy with varying concentrations (0, 10, 20, 30, 40 weights %) of kaolin were prepared by hand-out method. The composites showed improved (E, Gc, Kc, HB, and WR) properties with the addition of filler. Also, similar results were observed with the decrease in particle size. In addition, in this study, mult

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Preparation Adhesive Material Reinforced of Graphite Particles and Study Electrical and Mechanical and Thermal Properties
...Show More Authors

The physical, mechanical, electrical and thermal properties containing (Viscosity, curing, adhesion force, Tensile strength, Lap shear strength, Resistively, Electrical conductivity and flammability) of adhesive material that prepared from Nitrocellulose reinforced with graphite particles and aluminum streat. A comparison is made between the properties of adhesive material with varying percentage of graphite powder (0%, 25%, 30%, 35%, 40%) to find out the effect of reinforcement on the adhesive material. The ability of property an electrical was studied through the measurement of conductivity a function of temperature varying. The results of comparison have clearly shown that the increasing of conten

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Study the Effect Different Radioactive Dose on Mechanical Properties of Composite Material from Novolak Resin Exposure to High – Energy Radiation
...Show More Authors

The research involves using phenol – formaldehyde (Novolak) resin as matrix for making composite material, while glass fiber type (E) was used as reinforcing materials. The specimen of the composite material is reinforced with (60%) ratio of glass fiber.

      The impregnation method is used in test sample preparation, using molding by pressure presses.

      All samples were exposure to (Co60) gamma rays of an average energy (2.5)Mev. The total doses were (208, 312 and 728) KGy.

      The mechanical tests (bending, bending strength, shear force, impact strength and surface indentation) were performed on un irradiated and irrad

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Engineering
Study the Effects of Microwave Furnace Heat on The Mechanical Properties and Estimated Fatigue life of AA2024-T3
...Show More Authors

This research aims to study the effect of microwave furnace heat on the mechanical properties and fatigue life of aluminum alloy (AA 2024-T3). Four conditions were used inside microwave furnace (specimens subjected to heat as dry for 30 and 60min. and specimens subjected to heat as wet (water) for 30 and 60 min.), and compared all results with original alloy (AA 2024-T3). Tensile, fatigue, hardness and surface roughness tests were used in this investigation. It is found that hardness of dry conditions is higher than wet conditions and it increases with increasing of time duration inside microwave furnace for dry and wet conditions. Also, tensile strength has the same behavior of hardness, but it increases with decreasing

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 18 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Effect of Temperature On The Dissociation Of Cysteine In Aqueous Solutions From Conductivity Measurements
...Show More Authors

The  conductance  of  solu ti ons  of  cysteine  in  water  at  different concentrations and temperatures has been measured. These solutions obey Onsagcr  equation  and  give  linear  relations  especially  at  low concentrations. In more concentrated solutions a deviation from the equation is observed.

The molar conductivity of these solutions decreases with t he increase  in concen trations at constant temperature.

The  values of  the ionization constants and the conductivity at  infin ite

dilution for each temperature have been calcu lated.

 

View Publication Preview PDF
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Bacterial contamination of AL-Habania and AL-Tharthar reservoirs
...Show More Authors

Bacterial contamination of AL-Habania and AL-Tharthar reservoirs were studied during the period from February 2001 to January 2002, samples were collected from four stations in AL-Habania reservoir (AL-Warrar, AL-Theban regulator, middle of the reservoir and the fourth was towards AL-Razzaza reservoir) and from two stations at AL-Tharthar reservoir (Ein AL-Hilwa and the middle of the reservoir). Coliform bacteria, faecal Coliforms, Streptococci, faecal Streptococci and total count of bacteria were used as parameters of bacterial contamination in waters of both reservoirs through calculating the most probable number. Highest count of Coliform bacteria (15000 cell/100ml) was recorded at Ein AL-Hilwa and lowest count at AL-Theban regulator

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Nov 07 2016
Journal Name
Abu Dhabi International Petroleum Exhibition & Conference
Developed Material Balance Approach for Estimating Gas Initially in Place and Ultimate Recovery for Tight Gas Reservoirs
...Show More Authors
Abstract<p>The gas material balance equation (MBE) has been widely used as a practical as well as a simple tool to estimate gas initially in place (GIIP), and the ultimate recovery (UR) factor of a gas reservoir. The classical form of the gas material balance equation is developed by considering the reservoir as a simple tank model, in which the relationship between the pressure/gas compressibility factor (p/z) and cumulative gas production (Gp) is generally appeared to be linear. This linear plot is usually extrapolated to estimate GIIP at zero pressure, and UR factor for a given abandonment pressure. While this assumption is reasonable to some extent for conventional reservoirs, this may incur</p> ... Show More
View Publication
Scopus (10)
Crossref (5)
Scopus Crossref