نتيجة للتطورات الأخيرة في أبحاث الطرق السريعة بالإضافة إلى زيادة استخدام المركبات، كان هناك اهتمام كبير بنظام النقل الذكي الأكثر حداثة وفعالية ودقة (ITS) في مجال رؤية الكمبيوتر أو معالجة الصور الرقمية، يلعب تحديد كائنات معينة في صورة دورًا مهمًا في إنشاء صورة شاملة. هناك تحدٍ مرتبط بالتعرف على لوحة ترخيص السيارة (VLPR) بسبب الاختلاف في وجهة النظر، والتنسيقات المتعددة، وظروف الإضاءة غير الموحدة في وقت الحصول على الصورة والشكل واللون، بالإضافة إلى الصعوبات مثل ضعف دقة الصورة ، الصورة الباهتة ، الإضاءة السيئة، التباين المنخفض، يجب التغلب عليها. اقترحت هذه الورقة نموذجًا باستخدام تعديل الذاكرة الترابطية ثنائية الاتجاه (MBAM)، وهي نوع واحد من الذاكرة الترابطية غير المتجانسة، وتعمل MBAM على مرحلتين)مرحلتي التعلم والتقارب) للتعرف على اللوحة، ويمكن لهذا النموذج المقترح التغلب على تلك الصعوبات بسبب قدرة الذاكرة الترابطية لـ MBAM على قبول الضوضاء وتمييز الصور المشوهة، وكذلك سرعة عملية الحساب نظرًا لصغر حجم الشبكة. نتيجة دقة تحديد منطقة اللوحة هي 99.6٪، ودقة تجزئة الأحرف 98٪، والدقة المحققة للتعرف على الأحرف هي100 ٪ في ظروف مختلفة.
Presupposition is the background belief that is known by both the speaker and the addressee, it is tied to particular words and aspects of the surface structure that act as linguistic triggers. The present study aims at investigating whether Iraqi fourth -year university students are able to recognize the English presuppositions through the meaning of these linguistic triggers .To fulfil the basic requirements of the study, the researcher has conducted a test . The results of the study have validated the hypothesis of the work and it is found that the linguistic triggers are important tools in recognizing presuppositions.
Emotion could be expressed through unimodal social behaviour’s or bimodal or it could be expressed through multimodal. This survey describes the background of facial emotion recognition and surveys the emotion recognition using visual modality. Some publicly available datasets are covered for performance evaluation. A summary of some of the research efforts to classify emotion using visual modality for the last five years from 2013 to 2018 is given in a tabular form.
This work presents mainly the buckling load of sandwich plates with or without crack for different cases. The buckling loads are analyzed experimentally and numerically by using ANSYS 15. The experimental investigation was to fabricate the cracked sandwich plate from stainless steel and PVC to find mechanical properties of stainless steel and PVC such as young modulus. The buckling load for different aspect ratio, crack length, cracked location and plate without crack found. The experimental results were compared with that found from ANSYS program. Present of crack is decreased the buckling load and that depends on crack size, crack location and aspect ratio.
This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreIn this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
Two molecular imprinted polymer (MIP) membranes for Levofloxacin (LEV) were prepared based on PVC matrix. The imprinted polymers were prepared by polymerization of styrene (STY) as monomer, N,N methylene di acrylamide as a cross linker ,benzoyl peroxide (BPO) as an initiator and levofloxacin as a template. Di methyl adepate (DMA) and acetophenone (AOPH) were used as plasticizers , the molecular imprinted membranes and the non molecular imprinted membranes were prepared. The slopes and detection limits of the liquid electrodes ranged from -21.96 – -19.38 mV/decade and 2×10-4M- 4×10-4M, and Its response time was around 1 minute, respectively. The liquid electrodes were packed with 0.1 M standar
... Show MoreThe area of character recognition has received a considerable attention by researchers all over the world during the last three decades. However, this research explores best sets of feature extraction techniques and studies the accuracy of well-known classifiers for Arabic numeral using the Statistical styles in two methods and making comparison study between them. First method Linear Discriminant function that is yield results with accuracy as high as 90% of original grouped cases correctly classified. In the second method, we proposed algorithm, The results show the efficiency of the proposed algorithms, where it is found to achieve recognition accuracy of 92.9% and 91.4%. This is providing efficiency more than the first method.