Wind turbine (WT) is now a major renewable energy resource used in the modern world. One of the most significant technologies that use the wind speed (WS) to generate electric power is the horizontal-axis wind turbine. In order to enhance the output power over the rated WS, the blade pitch angle (BPA) is controlled and adjusted in WT. This paper proposes and compares three different controllers of BPA for a 500-kw WT. A PID controller (PIDC), a fuzzy logic controller (FLC) based on Mamdani and Sugeno fuzzy inference systems (FIS), and a hybrid fuzzy-PID controller (HFPIDC) have been applied and compared. Furthermore, Genetic Algorithm (GA) and Particle swarm optimization (PSO) have been applied and compared in order to identify the optimal PID parameters (kp, ki, kd). The objective of GA and PSO is minimized the error signal in output power based on actual WS. The results for three different controllers show that the optimal hybrid FPIDC based on the Sugeno inference system with PSO produces the optimal results regard to reduce the error signal and stable output power under actual WS.
The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals
... Show MoreVarious theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show MoreWe propose two simple, rapid, and convenient spectrophotometric methods which are described for the determination of cephalexin in bulk and its pharmaceutical preparations. They are based on the measurement of the flame atomic emission of potassium ion (in the first method) and colorimetric determination of the green colored solution at 610 nm formed after the reaction of cephalexin with potassium permanganate as an oxidant agent (in the second method) in basic medium. The working conditions of the methods are investigated and optimized. Beer's law plot shows a good correlation in the concentration range of 5-40?g ml-1. The detection limits are 2.573,2.814 ?g ml-1 for the flame emission photometric method and 1.844,2.016 ?g ml-1 for colo
... Show MoreThis study aims to measure the basic foundations of organizational health in the General Company for Food Products and to indicate the extent of its presence or not within the company under investigation.
This research was completed using a descriptive and analytical approach using a sample of 97 employees from the General Company for Petroleum Products. Calculating the arithmetic mean, standard deviation, coefficient of variation, and confirmatory factor analysis are all part of the data processing process.
Future wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date ve
... Show MoreAbstract
Objectives: The study is carried out to assess functional performance for heart's valve replacement patients and find out relationship with sociodemographic data and clinical data
Methodology: Descriptive design is carried out at cardiac surgery centers in Baghdad ; Ibn -Al Betar Specialized for cardiac surgery center and Al-Iraqi center for cardiac disease. its initiation from December28the 2013 to September 1st 2014,A non- probability (purposive) sample of 50 adults patients are attended cardiac surgery centers at Baghdad city and who have heart valves replacement. The data collection through development of questionnaire which is composed from three parts(socio demographic data, clinical information, functional performa
: zonal are included in phraseological units, form metaphorical names for a person, give him various emotional and evaluative characteristics. This article examines the topic of zoomorphic metaphors that characterize a person in the Russian and Arabic languages in the aspect of their comparative analysis, since the comparative analysis of the metaphorical meanings of animalisms is an important method for studying cultural linguistics, since zoomorphic metaphors are a reflection of culture in a language.