Background: The efficacy of educational strategies is crucial for nursing students to competently perform pediatric procedures like nasogastric tube insertion. Specific Background: This study evaluates the effectiveness of simulation, blended, and self-directed learning strategies in enhancing these skills among nursing students. Knowledge Gap: Previous research lacks a comprehensive comparison of these strategies' impacts on skill development in pediatric nursing contexts. Aims: The study aims to assess the effectiveness of different educational strategies on nursing students' ability to perform pediatric nasogastric tube insertions. Methods: A pre-experimental design was employed at the College of Nursing, University of Baghdad, involving 60 students divided into three groups. Data were collected via an observational checklist from October to December 2023 and analyzed using SPSS. Results: Significant improvements in students' skills were observed across all groups. Simulation strategy showed highly significant differences with p-values of .001 and large effect sizes (Partial Eta Squared: .887, .902, .582). Blended strategy also demonstrated significant results with p-values of .001 and large effect sizes (Partial Eta Squared: .813, .936, .883). The self-directed strategy was similarly effective, with p-values of .001 and large effect sizes (Partial Eta Squared: .871, .739, .667). Descriptive statistics revealed a notable increase in mean scores in post-tests, indicating the effectiveness of these strategies. Novelty: This study uniquely compares the effectiveness of simulation, blended, and self-directed learning strategies, providing comprehensive insights into their impacts on pediatric nursing education. Implications: The findings underscore the importance of incorporating diverse learning strategies in nursing curricula to enhance practical skills, suggesting that a combination of these methods could be most beneficial for student learning and competence in clinical settings. Highlights: Effective Strategies: Simulation, blended, and self-directed learning enhance pediatric nursing skills. Significant Improvement: All methods showed highly significant skill development with large effect sizes. Unique Comparison: The study provides valuable insights for nursing education curricula. Keywords: Nursing education, pediatric skills, nasogastric tube insertion, simulation learning, blended learning
The research aimed at designing teaching program using jigsaw in learning spiking in volleyball as well as identifying the effect of these exercises on learning spring in volleyball. The researchers used the experimental method on (25) students as experimental group and (27) students as controlling group and (15) students as pilot study group. The researchers conducted spiking tests then the data was collected and treated using proper statistical operations to conclude that the strategy have a positive effect in experimental group. Finally, the researchers recommended using the strategy in making similar studies on other subjects and skills.
The study aims at identifying the sources of information and explaining their role in e-learning from the viewpoint of the Iraqi college students. The researchers relied on the descriptive method of the survey method to collect data and know the point of view of undergraduate students from the Department of Information in the College of Arts / Tikrit University and the Department of Quranic Studies at the College of Arts / University of Baghdad. The questionnaire was used as an instrument of the study, the research sample is (120) students; each section has (60) male and female students. The study concluded that there are many types and forms of information sources that students receive through electronic educational platforms from text con
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreThe Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone
... Show MoreProducts’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.
 
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreA Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton
... Show More