Background: The efficacy of educational strategies is crucial for nursing students to competently perform pediatric procedures like nasogastric tube insertion. Specific Background: This study evaluates the effectiveness of simulation, blended, and self-directed learning strategies in enhancing these skills among nursing students. Knowledge Gap: Previous research lacks a comprehensive comparison of these strategies' impacts on skill development in pediatric nursing contexts. Aims: The study aims to assess the effectiveness of different educational strategies on nursing students' ability to perform pediatric nasogastric tube insertions. Methods: A pre-experimental design was employed at the College of Nursing, University of Baghdad, involving 60 students divided into three groups. Data were collected via an observational checklist from October to December 2023 and analyzed using SPSS. Results: Significant improvements in students' skills were observed across all groups. Simulation strategy showed highly significant differences with p-values of .001 and large effect sizes (Partial Eta Squared: .887, .902, .582). Blended strategy also demonstrated significant results with p-values of .001 and large effect sizes (Partial Eta Squared: .813, .936, .883). The self-directed strategy was similarly effective, with p-values of .001 and large effect sizes (Partial Eta Squared: .871, .739, .667). Descriptive statistics revealed a notable increase in mean scores in post-tests, indicating the effectiveness of these strategies. Novelty: This study uniquely compares the effectiveness of simulation, blended, and self-directed learning strategies, providing comprehensive insights into their impacts on pediatric nursing education. Implications: The findings underscore the importance of incorporating diverse learning strategies in nursing curricula to enhance practical skills, suggesting that a combination of these methods could be most beneficial for student learning and competence in clinical settings. Highlights: Effective Strategies: Simulation, blended, and self-directed learning enhance pediatric nursing skills. Significant Improvement: All methods showed highly significant skill development with large effect sizes. Unique Comparison: The study provides valuable insights for nursing education curricula. Keywords: Nursing education, pediatric skills, nasogastric tube insertion, simulation learning, blended learning
This research deals with the financial reporting for the non-current assets impairment from the viewpoint of international accounting standards, especially IAS 36 "Impairment of assets”. The research problem focused on the non-compliance with the requirements of IAS 36 which would negatively affect the accounting information quality, and its characteristics, especially the relevance of accounting information, that confirms the necessity of having such information for the three sub-characteristics in order to be useful for the decisions of users represented
Small and Medium Enterprises (SMEs) in Iraq have experienced low performance due to the limited usage of accounting information systems (AIS) and the inability to exploit knowledge of management capabilities (KMC). These deficiencies have led to competitive pressures in the marketplace that have adversely affected their sales and production. This study investigates the role of AIS in terms of operation support, knowledge support, regulatory support, and the role of KMC, including knowledge acquisition, knowledge transfer, and knowledge utilized to enhance organizational performance in Iraqi SMEs. The target population was managers and owners in SMEs using AIS in Iraq’s cities. A non-probability purposive sampling technique was use
... Show MoreThe organizational culture is considered as an important topic. In this research, this topic was studied in modern paints Industries Company to assess its role in job performance and to show if there is this relationship between them or no. it is, also, attempted to measure this strength of this relationship if any. The 40 cases research sample was chosen. This sample included the chief executive, his assistants, key managers, and their assistants. The questioner consists of two sets of questions : the first set ( concerning the organizational culture) covers six variables (Physical structures , Symbols
... Show MoreThis paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show MoreDeep Learning Techniques For Skull Stripping of Brain MR Images
Idioms are a very important part of the English language: you are told that if you want to go far (succeed) you should pull your socks up (make a serious effort to improve your behaviour, the quality of your work, etc.) and use your grey matter (brain).1 Learning and translating idioms have always been very difficult for foreign language learners. The present paper explores some of the reasons why English idiomatic expressions are difficult to learn and translate. It is not the aim of this paper to attempt a comprehensive survey of the vast amount of material that has appeared on idioms in Adams and Kuder (1984), Alexander (1984), Dixon (1983), Kirkpatrick (2001), Langlotz (2006), McCarthy and O'Dell (2002), and Wray (2002), among others
... Show MoreThe convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show More