Abstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS attacks in SDN efficiently. From machine learning approaches, it can be explored that the best way to detect DDoS attack is based on utilizing deep learning procedures.Moreover, analyze the methods that combine it with other machine learning techniques. The most benefits that can be achieved from using the deep learning methods are the ability to do both feature extraction along with data classification; the ability to extract the specific information from partial data. Nevertheless, it is appropriate to recognize the low-rate attack, and it can get more computation resources than other machine learning where it can use graphics processing unit (GPU) rather than central processing unit (CPU) for carrying out the matrix operations, making the processes computationally effective and fast.
A standard theoretical neutron energy flux distribution is achieved for the triton-triton nuclear fusion reaction in the range of triton energy about ≤10 MeV. This distribution give raises an evidence to provide the global calculations including the characteristics fusion parameters governing the T-T fusion reaction.
Human serum albumin (HSA) nanoparticles have been widely used as versatile drug delivery systems for improving the efficiency and pharmaceutical properties of drugs. The present study aimed to design HSA nanoparticle encapsulated with the hydrophobic anticancer pyridine derivative (2-((2-([1,1'-biphenyl]-4-yl)imidazo[1,2-a]pyrimidin-3-yl)methylene)hydrazine-1-carbothioamide (BIPHC)). The synthesis of HSA-BIPHC nanoparticles was achieved using a desolvation process. Atomic force microscopy (AFM) analysis showed the average size of HSA-BIPHC nanoparticles was 80.21 nm. The percentages of entrapment efficacy, loading capacity and production yield were 98.11%, 9.77% and 91.29%, respectively. An In vitro release study revealed that HSA-BIPHC nan
... Show MoreThe present study investigates the application of a combined electrocoagulation-electrooxidation (EC-EO) process for the treatment of wastewater generated from Al-Dewaniya petroleum refinery plant in Iraq. The EC-EO process was examined in terms of its ability to simultaneously produce coagulant and oxidant agents by using a parallel plate configuration system composed of stainless steel plates as cathode and pair of aluminum and graphite plates as anode at two different current concentrations (1.92A/l and 0.96A/l). The results showed that the best conditions for treatment of Al-Dewaniya petroleum refinery wastewater using the combined approach were current concentration of (0.96A/l), current density
Mesoporous silica (MPS) nanoparticle was prepared as carriers for drug delivery systems by sol–gel method from sodium silicate as inexpensive precursor of silica and Cocamidopropyl betaine (CABP) as template. The silica particles were characterized by SEM, TEM, AFM, XRD, and N2adsorption–desorption isotherms. The results show that the MPS particle in the nanorange (40-80 nm ) with average diameter equal to 62.15 nm has rods particle morphology, specific surface area is 1096.122 m2/g, pore volume 0.900 cm3/g, with average pore diameter 2.902 nm, which can serve as efficient carriers for drugs. The adsorption kinetic of Ciprofloxacin (CIP) drug was studied and the data were analyzed and found to match well with
... Show MoreA nonlinear filter for smoothing color and gray images
corrupted by Gaussian noise is presented in this paper. The proposed
filter designed to reduce the noise in the R,G, and B bands of the
color images and preserving the edges. This filter applied in order to
prepare images for further processing such as edge detection and
image segmentation.
The results of computer simulations show that the proposed
filter gave satisfactory results when compared with the results of
conventional filters such as Gaussian low pass filter and median filter
by using Cross Correlation Coefficient (ccc) criteria.
A novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solutio
... Show MoreIn the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier a
... Show More