The Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimating the scale parameter of the Weibull distribution. To evaluate their performance, we generate simulated datasets with different sample sizes and varying parameter values. A technique for pre-estimation shrinkage is suggested to enhance the precision of estimation. Simulation experiments proved that the Bayesian shrinkage estimator and shrinkage preestimation under the squared loss function method are better than the other methods because they give the least mean square error. Overall, our findings highlight the advantages of shrinkage Bayesian estimation methods for the proposed distribution. Researchers and practitioners in fields reliant on extreme value analysis can benefit from these findings when selecting appropriate Bayesian estimation techniques for modeling extreme events accurately and efficiently.
In this paper, Bayes estimators of the parameter of Maxwell distribution have been derived along with maximum likelihood estimator. The non-informative priors; Jeffreys and the extension of Jeffreys prior information has been considered under two different loss functions, the squared error loss function and the modified squared error loss function for comparison purpose. A simulation study has been developed in order to gain an insight into the performance on small, moderate and large samples. The performance of these estimators has been explored numerically under different conditions. The efficiency for the estimators was compared according to the mean square error MSE. The results of comparison by MSE show that the efficiency of Bayes est
... Show MoreABSTRUCT
In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error ( λ ) in the model (SPSEM), estimated the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo
... Show MoreGumbel distribution was dealt with great care by researchers and statisticians. There are traditional methods to estimate two parameters of Gumbel distribution known as Maximum Likelihood, the Method of Moments and recently the method of re-sampling called (Jackknife). However, these methods suffer from some mathematical difficulties in solving them analytically. Accordingly, there are other non-traditional methods, like the principle of the nearest neighbors, used in computer science especially, artificial intelligence algorithms, including the genetic algorithm, the artificial neural network algorithm, and others that may to be classified as meta-heuristic methods. Moreover, this principle of nearest neighbors has useful statistical featu
... Show MoreEach phenomenon contains several variables. Studying these variables, we find mathematical formula to get the joint distribution and the copula that are a useful and good tool to find the amount of correlation, where the survival function was used to measure the relationship of age with the level of cretonne in the remaining blood of the person. The Spss program was also used to extract the influencing variables from a group of variables using factor analysis and then using the Clayton copula function that is used to find the shared binary distributions using multivariate distributions, where the bivariate distribution was calculated, and then the survival function value was calculated for a sample size (50) drawn from Yarmouk Ho
... Show MoreThe problem of Multicollinearity is one of the most common problems, which deal to a large extent with the internal correlation between explanatory variables. This problem is especially Appear in economics and applied research, The problem of Multicollinearity has a negative effect on the regression model, such as oversized variance degree and estimation of parameters that are unstable when we use the Least Square Method ( OLS), Therefore, other methods were used to estimate the parameters of the negative binomial model, including the estimated Ridge Regression Method and the Liu type estimator, The negative binomial regression model is a nonline
... Show MoreIn this research estimated the parameters of Gumbel distribution Type 1 for Maximum values through the use of two estimation methods:- Moments (MoM) and Modification Moments(MM) Method. the Simulation used for comparison between each of the estimation methods to reach the best method to estimate the parameters where the simulation was to generate random data follow Gumbel distributiondepending on three models of the real values of the parameters for different sample sizes with samples of replicate (R=500).The results of the assessment were put in tables prepared for the purpose of comparison, which made depending on the mean squares error (MSE).
In this paper, we will discuss the performance of Bayesian computational approaches for estimating the parameters of a Logistic Regression model. Markov Chain Monte Carlo (MCMC) algorithms was the base estimation procedure. We present two algorithms: Random Walk Metropolis (RWM) and Hamiltonian Monte Carlo (HMC). We also applied these approaches to a real data set.
The paper shows how to estimate the three parameters of the generalized exponential Rayleigh distribution by utilizing the three estimation methods, namely, the moment employing estimation method (MEM), ordinary least squares estimation method (OLSEM), and maximum entropy estimation method (MEEM). The simulation technique is used for all these estimation methods to find the parameters for the generalized exponential Rayleigh distribution. In order to find the best method, we use the mean squares error criterion. Finally, in order to extract the experimental results, one of object oriented programming languages visual basic. net was used
This research a study model of linear regression problem of autocorrelation of random error is spread when a normal distribution as used in linear regression analysis for relationship between variables and through this relationship can predict the value of a variable with the values of other variables, and was comparing methods (method of least squares, method of the average un-weighted, Thiel method and Laplace method) using the mean square error (MSE) boxes and simulation and the study included fore sizes of samples (15, 30, 60, 100). The results showed that the least-squares method is best, applying the fore methods of buckwheat production data and the cultivated area of the provinces of Iraq for years (2010), (2011), (2012),
... Show MoreThis paper deals with defining Burr-XII, and how to obtain its p.d.f., and CDF, since this distribution is one of failure distribution which is compound distribution from two failure models which are Gamma model and weibull model. Some equipment may have many important parts and the probability distributions representing which may be of different types, so found that Burr by its different compound formulas is the best model to be studied, and estimated its parameter to compute the mean time to failure rate. Here Burr-XII rather than other models is consider because it is used to model a wide variety of phenomena including crop prices, household income, option market price distributions, risk and travel time. It has two shape-parame
... Show More