The Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimating the scale parameter of the Weibull distribution. To evaluate their performance, we generate simulated datasets with different sample sizes and varying parameter values. A technique for pre-estimation shrinkage is suggested to enhance the precision of estimation. Simulation experiments proved that the Bayesian shrinkage estimator and shrinkage preestimation under the squared loss function method are better than the other methods because they give the least mean square error. Overall, our findings highlight the advantages of shrinkage Bayesian estimation methods for the proposed distribution. Researchers and practitioners in fields reliant on extreme value analysis can benefit from these findings when selecting appropriate Bayesian estimation techniques for modeling extreme events accurately and efficiently.
This paper investigates an effective computational method (ECM) based on the standard polynomials used to solve some nonlinear initial and boundary value problems appeared in engineering and applied sciences. Moreover, the effective computational methods in this paper were improved by suitable orthogonal base functions, especially the Chebyshev, Bernoulli, and Laguerre polynomials, to obtain novel approximate solutions for some nonlinear problems. These base functions enable the nonlinear problem to be effectively converted into a nonlinear algebraic system of equations, which are then solved using Mathematica®12. The improved effective computational methods (I-ECMs) have been implemented to solve three applications involving
... Show MoreSoil acts as a last sink for elements that people release into the environment through a range of activities due to its physiochemical characteristics. These substances, whether are organic or mineral pollutants, accumulate in the soil and constitute a significant risk to the ecosystem in general because they mess with the chemical and physical equilibrium of the soil, get into the food chain, and eventually get to people. When pollutant concentrations during the bioaccumulated process exceed the global standards for what is regarded as a contaminant in water, air, and soil. Nine soil samples were collected from different sites and two samples from each site at two depths (0-20 and 20-40 cm) to determine if there were any
... Show MoreObjective: The evaluation of serum osteocalcin (OSN) for Iraqi infertile patients to see the effect of osteocalcin insufficiency, which may lead to a decreased level of testosterone production in males that may cause infertility. Methods: Forty two newly diagnosed infertile males age range (24–47) years and thirty two apparently healthy males as controls age range (25–58) years. Serum levels of testosterone (TEST), stimulating follicle hormone (FSH) and luteinizing hormone (LH), prolactin (PROL), osteocalcin OSN, and fasting blood sugar (FBS) were performed in both patients and controls. Estimation of serum OSN by Immulite1000 auto-analyzer, TEST, FSH, LH, PROL, and FBS by Immulite2000 auto-analyzer. Results: Infertile patients
... Show MoreIn this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method and the least squares method and that using the method of simulation model first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.
Testing the sensitivity of periodontal pathogens requires the selection of an easier and more reliable method to be used with such anaerobic bacteria that need a long period of time for growth. Natural materials are a new era of antibacterial agents to control periodontal infections. The aims of the current study were to test the antibacterial activity of two natural agents, namely olibanum and alum, against three types of red complex periodontal pathogens and compare the application of agar diffusion and microdilution methods for testing the susceptibility. Gingival crevicular fluid from pockets with chronic infections was sampled as a source for the three types of bacteria, Porphyromonas gingivalis, Tannerella forsythia
... Show MoreIn recent decades, tremendous success has been achieved in the advancement of chemical admixtures for Portland cement concrete. Most efforts have concentrated on improving the properties of concrete and studying the factors that influence on these properties. Since the compressive strength is considered a valuable property and is invariably a vital element of the structural design, especially high early strength development which can be provide more benefits in concrete production, such as reducing construction time and labor and saving the formwork and energy. As a matter of fact, it is influenced as a most properties of concrete by several factors including water-cement ratio, cement type and curing methods employed.
Because of acce
As the process of estimate for model and variable selection significant is a crucial process in the semi-parametric modeling At the beginning of the modeling process often At there are many explanatory variables to Avoid the loss of any explanatory elements may be important as a result , the selection of significant variables become necessary , so the process of variable selection is not intended to simplifying model complexity explanation , and also predicting. In this research was to use some of the semi-parametric methods (LASSO-MAVE , MAVE and The proposal method (Adaptive LASSO-MAVE) for variable selection and estimate semi-parametric single index model (SSIM) at the same time .
... Show More