The Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimating the scale parameter of the Weibull distribution. To evaluate their performance, we generate simulated datasets with different sample sizes and varying parameter values. A technique for pre-estimation shrinkage is suggested to enhance the precision of estimation. Simulation experiments proved that the Bayesian shrinkage estimator and shrinkage preestimation under the squared loss function method are better than the other methods because they give the least mean square error. Overall, our findings highlight the advantages of shrinkage Bayesian estimation methods for the proposed distribution. Researchers and practitioners in fields reliant on extreme value analysis can benefit from these findings when selecting appropriate Bayesian estimation techniques for modeling extreme events accurately and efficiently.
The goal of this article is to construct fibrewise w-compact (resp. locally w-compact) spaces. Some related results and properties of these concepts will be investigated. Furthermore, we investigate various relationships between these concepts and three classes of fibrewise w-separation axioms.
New tetradentate Schiff base [H2L] namely [2,2׳ -(ethane-1,2- diylbis (azan-1-ylylidene) diacetic acid)] was prepared from condensation of ethylenediamine with glyoxylic acid in ethanol as a solvent in presence of drops of 48% HBr .The structure of ligand (H2L) was characterized by,F-IR, U.V-Vis.,1H-,13C-NMR, pectrophotometer,melting point and elemental microanalysis C.H.N. Metal complexes of the ligand (H2L) in general Molecular formula [M(L)(H2O)2], where M= Co(II), Ni(II), Cu(II), Mn(II) and Hg(II); L=(C6H8N2O4) were synthesized were characterized by, Atomic absorption, F-IR, U.V-Vis. spectra, molar conductivity and magnetic susceptibility.It was found that all the complexes showed octahedral geometries.And
... Show MoreThe study focuses on assessment of the quality of some image enhancement methods which were implemented on renal X-ray images. The enhancement methods included Imadjust, Histogram Equalization (HE) and Contrast Limited Adaptive Histogram Equalization (CLAHE). The images qualities were calculated to compare input images with output images from these three enhancement techniques. An eight renal x-ray images are collected to perform these methods. Generally, the x-ray images are lack of contrast and low in radiation dosage. This lack of image quality can be amended by enhancement process. Three quality image factors were done to assess the resulted images involved (Naturalness Image Quality Evaluator (NIQE), Perception based Image Qual
... Show MoreMagnesium aluminum silicate of glass ceramic having different amounts of magnesium fluoride in the range (0-13.2)%. Thermal expansion coefficient and micro hardness of the base glass and glass ceramic samples are seen to be interdependent but due to the multi – component system, the behaviour is seen to be somewhat complex, with an increase in Mg F2 content. The thermal expansion coefficient increase and micro harness decrease, numerical simulation of thermal expansion and hardness is useful in this study, L2 – regression is used to calculate the two parameters associated with each glass component, by comparing the measured parameters and the calculated parameters ,it is useful to use such a method to calculate the quantity
... Show MoreExcessive skewness which occurs sometimes in the data is represented as an obstacle against normal distribution. So, recent studies have witnessed activity in studying the skew-normal distribution (SND) that matches the skewness data which is regarded as a special case of the normal distribution with additional skewness parameter (α), which gives more flexibility to the normal distribution. When estimating the parameters of (SND), we face the problem of the non-linear equation and by using the method of Maximum Likelihood estimation (ML) their solutions will be inaccurate and unreliable. To solve this problem, two methods can be used that are: the genetic algorithm (GA) and the iterative reweighting algorithm (IR) based on the M
... Show MoreThe process of evaluating data (age and the gender structure) is one of the important factors that help any country to draw plans and programs for the future. Discussed the errors in population data for the census of Iraqi population of 1997. targeted correct and revised to serve the purposes of planning. which will be smoothing the population databy using nonparametric regression estimator (Nadaraya-Watson estimator) This estimator depends on bandwidth (h) which can be calculate it by two ways of using Bayesian method, the first when observations distribution is Lognormal Kernel and the second is when observations distribution is Normal Kernel
... Show MoreBoth traditional and novel techniques were employed in this work for magnetic shielding evaluation to shed new light on the magnetic and aromaticity properties of benzene and 12 [n]paracyclophanes with n = 3–14. Density functional theory (DFT) with the B3LYP functional and all-electron Jorge-ATZP and x2c-TZVPPall-s basis sets was utilized for geometry optimization and magnetic shielding calculations, respectively. Additionally, the 6-311+G(d,p) basis set was incorporated for the purpose of comparing the magnetic shielding results. In addition to traditional evaluations such as NICS/NICSzz-Scan, and 2D-3D σiso(r)/σzz(r) maps, two new techniques were implemented: bendable grids (BGs) and cylindrical grids (CGs) of ghost atoms (Bqs). BGs a
... Show MoreIn this study, we focused on the random coefficient estimation of the general regression and Swamy models of panel data. By using this type of data, the data give a better chance of obtaining a better method and better indicators. Entropy's methods have been used to estimate random coefficients for the general regression and Swamy of the panel data which were presented in two ways: the first represents the maximum dual Entropy and the second is general maximum Entropy in which a comparison between them have been done by using simulation to choose the optimal methods.
The results have been compared by using mean squares error and mean absolute percentage error to different cases in term of correlation valu
... Show More