The Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimating the scale parameter of the Weibull distribution. To evaluate their performance, we generate simulated datasets with different sample sizes and varying parameter values. A technique for pre-estimation shrinkage is suggested to enhance the precision of estimation. Simulation experiments proved that the Bayesian shrinkage estimator and shrinkage preestimation under the squared loss function method are better than the other methods because they give the least mean square error. Overall, our findings highlight the advantages of shrinkage Bayesian estimation methods for the proposed distribution. Researchers and practitioners in fields reliant on extreme value analysis can benefit from these findings when selecting appropriate Bayesian estimation techniques for modeling extreme events accurately and efficiently.
Uropathogenic Escherichia coli is the main cause of urinary tract infections, the ability of this bacteria to cause urinary tract infections is related to a variety of virulence factors that enhance colonization and evade the immune response, one of these virulence factors is cytotoxic necrotizing factor 1 toxin which converts the glutamine residue to glutamic acid to activated GTPase Rho family. The study was meant to find out the prevalence rate of the cnf1 gene in Uropathogenic Escherichia coli isolated from Iraqi patients. Conventional laboratory methods were used for primary bacterial identification and molecular methods were used to confirm bacterial identity and gene detection. Escherichia coli was identified in 89/165 (53.93%) of th
... Show MoreThe main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).
In this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.
In this paper, we introduce three robust fuzzy estimators of a location parameter based on Buckley’s approach, in the presence of outliers. These estimates were compared using the variance of fuzzy numbers criterion, all these estimates were best of Buckley’s estimate. of these, the fuzzy median was the best in the case of small and medium sample size, and in large sample size, the fuzzy trimmed mean was the best.
The problem of Bi-level programming is to reduce or maximize the function of the target by having another target function within the constraints. This problem has received a great deal of attention in the programming community due to the proliferation of applications and the use of evolutionary algorithms in addressing this kind of problem. Two non-linear bi-level programming methods are used in this paper. The goal is to achieve the optimal solution through the simulation method using the Monte Carlo method using different small and large sample sizes. The research reached the Branch Bound algorithm was preferred in solving the problem of non-linear two-level programming this is because the results were better.
In this research we study a variance component model, Which is the one of the most important models widely used in the analysis of the data, this model is one type of a multilevel models, and it is considered as linear models , there are three types of linear variance component models ,Fixed effect of linear variance component model, Random effect of linear variance component model and Mixed effect of linear variance component model . In this paper we will examine the model of mixed effect of linear variance component model with one –way random effect ,and the mixed model is a mixture of fixed effect and random effect in the same model, where it contains the parameter (μ) and treatment effect (τi ) which has
... Show More