The Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimating the scale parameter of the Weibull distribution. To evaluate their performance, we generate simulated datasets with different sample sizes and varying parameter values. A technique for pre-estimation shrinkage is suggested to enhance the precision of estimation. Simulation experiments proved that the Bayesian shrinkage estimator and shrinkage preestimation under the squared loss function method are better than the other methods because they give the least mean square error. Overall, our findings highlight the advantages of shrinkage Bayesian estimation methods for the proposed distribution. Researchers and practitioners in fields reliant on extreme value analysis can benefit from these findings when selecting appropriate Bayesian estimation techniques for modeling extreme events accurately and efficiently.
Abstract\
The value chain analysis is main tools to achieve effective and efficient cost management; it requires a depth and comprehensive understanding for all internal and external activities associated with creating value. Supply chain as apart of value chain, that means managing it in active and efficient can achieve great results when adopting a comprehensive and integrated performance for these two chains activities. The research aims to identify possible ways to integrate the performance of value and supply chains of the sample" Kufa-cement plant" and determine the effect of this integration in enhancing customer value. The research arrival that logical and integrated analysis of value and supply chains helps
... Show More
The purpose of this research is to find the estimator of the average proportion of defectives based on attribute samples. That have been curtailed either with rejection of a lot finding the kth defective or with acceptance on finding the kth non defective.
The MLE (Maximum likelihood estimator) is derived. And also the ASN in Single Curtailed Sampling has been derived and we obtain a simplified Formula All the Notations needed are explained.
This research deals with unusual approach for analyzing the Simple Linear Regression via Linear Programming by Two - phase method, which is known in Operations Research: “O.R.”. The estimation here is found by solving optimization problem when adding artificial variables: Ri. Another method to analyze the Simple Linear Regression is introduced in this research, where the conditional Median of (y) was taken under consideration by minimizing the Sum of Absolute Residuals instead of finding the conditional Mean of (y) which depends on minimizing the Sum of Squared Residuals, that is called: “Median Regression”. Also, an Iterative Reweighted Least Squared based on the Absolute Residuals as weights is performed here as another method to
... Show MoreThis study uses load factor and loss factor to determine the power losses of the electrical feeders. An approach is presented to calculate the power losses in the distribution system. The feeder’s technical data and daily operation recorded data are used to calculate and analyze power losses.
This paper presents more realistic method for calculating the power losses based on load and loss factors instead of the traditional methods of calculating the power losses that uses the RMS value of the load current which not consider the load varying with respect to the time. Eight 11kV feeders are taken as a case study for our work to calculate load factor, loss factor and power losses. Four of them (F40, F42, F43 and F
... Show More
Abstract
The Classical Normal Linear Regression Model Based on Several hypotheses, one of them is Heteroscedasticity as it is known that the wing of least squares method (OLS), under the existence of these two problems make the estimators, lose their desirable properties, in addition the statistical inference becomes unaccepted table. According that we put tow alternative, the first one is (Generalized Least Square) Which is denoted by (GLS), and the second alternative is to (Robust covariance matrix estimation) the estimated parameters method(OLS), and that the way (GLS) method neat and certified, if the capabilities (Efficient) and the statistical inference Thread on the basis of an acceptable
... Show Moresilver nanoparticle which synthesized by.