Background: The primary stability of the dental implant is a crucial factor determining the ability to initiate temporary implant-supported prosthesis and for subsequent successful osseointegration, especially in the maxillary non-molar sites. This study assessed the reliability of the insertion torque of dental implants by relating it to the implant stability quotient values measured by the Osstell device. Material and methods: This study included healthy, non-smoker patients with no history of diabetes or other metabolic, or debilitating diseases that may affect bone healing, having non-restorable fractured teeth and retained roots in the maxillary non-molar sites. Primary dental implant stability was evaluated using a torque ratchet from the dental implant kit and ISQ values generated from the Osstell device. Results: Twenty patients (13 female and 7 male) with an age range of 25-65 years received twenty immediate dental implants. The insertion torque value ranged from 15 to 50 N/cm with a mean of 28 N/cm. At the same time, the ISQ values ranged between 50 and 80 ISQ values, with a mean of 63 ISQ values. The results showed a statistically significant positive correlation between the insertion torque of the dental implant measured by torque rachet and ISQ values checked with Osstell. Conclusion: The insertion torque can be used as a reliable method to estimate the primary stability of the immediately inserted dental implants in the maxillary non-molar sites comparable to the Osstell device ISQ values. In addition, torque ratchet is readily available in the dental implant kit at no additional cost, making it a valuable choice over the Osstell device.
In this research, an organobentonite (HDTMA-BT) was prepared by modifying a jordanian bentonite (BT) with hexadecyltrimethylammonium bromide. By means of in situ free radical polymerization in THF with AIBN as the initiator, this organobentonite is used to prepare the polymethylmethacrylate-bentonite (PMA-HDTMA-BT) nanocomposite. Scanning electron microscopy (SEM), x-ray diffraction (XRD), energy dispersive spectrometer (EDS) and Fourier transform infrared (FTIR) spectroscopy were used to characterize both HDTMA-BT and PMA-HDTMA-BT. Those adsorbents were used in a batch process to remove Pb(II), Cr(III) ions, and p-chlorophenol (PCP) from aqueous solution. Investigated factors included adsorbent dosage, initial pH solution, contact time, an
... Show MoreAbstract
This work involves studying the effect of adding some selective organic component mixture on corrosion behavior of pure Al and its alloys in condensed synthetic automotive solution (CSAS) at room temperature. This mixture indicates the increasing of octane number in previous study and in this study show the increasing in corrosion resistance through the decreasing in corrosion rate values.
Electrochemical measurements were carried out by potentiostat at 3 mV/sec to estimate the corrosion parameters using Tafel extrapolation method, in addition to cyclic polarization test to know the pitting susceptibility of materials in tested medium.
The cathodic Tafel slope
... Show MoreAbstract
The factor that keeps society from collapsing and regressing to chaos, violence, and lawbreaking is to stick to the human moral principles and criteria of moral behavior that prevent the spread of corruption and crime to the extent that law becomes devoid of activity and loss its dot errant power in front of chaos. The role of moral behavior is to motivate individuals to respect the general laws in dealing with others. Because of the dissemination of odd behavior patterns within our society, the social links are been badly affected and it's urgent for educational institutions to perform their duty in working on spreading awareness about moral values and avoid deviant directions and socially threatening t
... Show MoreThis research is presented experimental and numerical investigations of composite concrete-steel plate shear walls under axial loads to predicate the effect of both concrete compressive strength and aspect ratio of the wall on the axial capacity, lateral displacement and axial shortening of the walls. The experimental program includes casting and testing two groups of walls with various aspect ratios. The first group with aspect ratio H/L=1.667 and the second group with aspect ratio H/L=2. Each group consists of three composite concrete -steel plate wall with three targets of cube compressive strength of values 39, 54.75 and 63.3 MPa. The tests result obtained that the increase in concrete compressive strength results in increasing
... Show MoreABSTRACT Objective: Cardiovascular diseases are the first ranked cause of death worldwide. Adhering to health promoting lifestyle behaviors will maintain an individual’s cardiovascular health and decrease the risk of cardiovascular diseases. Methods: In this descriptive study, 150 nursing faculty were surveyed via a non-probability (purposive) sampling method to assess their adherence to health promoting lifestyle in order to know the risk of cardiovascular diseases. The Arabic version of Health-Promoting Lifestyle Profile II (HPLP-II) was used to achieve this goal. Results: Seventy-two nursing faculty completed the survey. The results indicated that the study sample had moderate level of health promotion based on Health-Promot
... Show MoreThis article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while
... Show MoreEco-friendly concrete is produced using the waste of many industries. It reduces the fears concerning energy utilization, raw materials, and mass-produced cost of common concrete. Several stress-strain models documented in the literature can be utilized to estimate the ultimate strength of concrete components reinforced with fibers. Unfortunately, there is a lack of data on how non-metallic fibers, such as polypropylene (PP), affect the properties of concrete, especially eco-friendly concrete. This study presents a novel approach to modeling the stress-strain behavior of eco-friendly polypropylene fiber-reinforced concrete (PFRC) using meta-heuristic particle swarm optimization (PSO) employing 26 PFRC various mixtures. The cement was partia
... Show MorePultruded materials made of Fiber-Reinforced Polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, etc. FRP materials are starting to compete with steel as structural materials owing to their great resistance, low self-weight, and cheap maintenance costs, especially in corrosive conditions. This study aims to evaluate the effectiveness of a novel concrete Composite Column (CC) using Encased I-Section (EIS) as a reinforcement in contrast to traditional steel bars by using Glass Fiber-Reinforced Polymer (GFRP) as I-section (CC-EIS) to evaluate the effectiveness of the hybrid columns which have been built by combining GFRP profiles with concrete columns. To achieve the aims of this study, nine circular co
... Show MoreIn this work, pure and Ag-doped nickel oxide (NiO) thin films were deposited on glass substrates with different dopant concentrations (0.1, 0.2, 0.3 and 0.4 wt.%) by pulsed-laser deposition (PLD) technique at room temperature. These films were annealed at temperature of 450 °C. The structural and optical properties of the prepared thin films were studied. It was found that annealing process has lead to increase the transmittance of the deposited films. Also, the transmittance was found to increase with doping concentration of silver in the deposited NiO films. The optical energy gap was decreased from 3.5 to 3.2 eV as the doping concentration was increased to 0.4 %.