The work include synthesis of nanocomposites (X / S / Ag) based on blend from Xanthan gum / sodium alginate polymers (X / S) with different loading of synthesized silver nanoparticales (0.01, 0.03 and 0.05 wt%) were added to the blend. The silver nanoparticles were prepared by reduction method and were characterized and analyzed using X-ray diffraction (XRD) and Atomic force microscope (AFM). XRD study showed the presence nanoparticle of silver with crystalline nature and face-centered cubic (FCC) structure and an average size of nanoparticles ranging from 32 to 37 nm. The surface study was performed using AFM which showed a fairly uniform shape to the nanocomposites and a spherical nature for the silver nanoparticles. The nanocomposite exhibited increase in the thermal stability and as well (X / S /0.05 Ag) nanocomposite film showed superior antimicrobial activity against Proteus, Basileus cyrus, Ecole, staph, pseudomonas, and Basilus subtilius.
The new Schiff base (L) “4‐[(2,4‐dimethoxy‐benzylidene)‐amino]‐1,5‐dimethyl‐2‐phenyl‐1,2‐dihydro‐pyrazol‐3‐one” was synthesized from 2,4‐dimethoxy‐benzaldehyde and 4‐amino‐1,5‐dimethyl‐2‐phenyl‐1,2‐dihydropyrazol‐3‐one, and the geometry of Schiff base was characterized and determined by proton nuclear magnetic resonance (1H‐NMR), mass, Fourier transform infrared (FT‐IR), and ultraviolet‐visible (UV‐vis) spectroscopy. Schiff complexes of Ni(II), Pd(II), Pt(IV), Zn(II), Cd(II), and Mg(II) have been prepared by reaction of ion metals with as‐prepared Schiff base. The results showed that synthesized complexes offered 1:2 m
This study focused on the biological synthesis of silver nanoparticles (AgNPs), using prodigiosin pigment produced by Serratia marcescens. The effect of parameters such as pH, temperature, time, with various concentrations of silver nitrate (AgNO3) and prodigiosin on the synthesis of AgNPs were also studied. Optimized results of the biosynthesis process revealed an increase in the intensity of Surface Plasmon Resonance (SPR) bands of nanoparticles with shifting at the wavelength of 400 nm. In addition, optimum synthesis of AgNPs was achieved at pH 12, temperature 55℃, and reaction time 24 h, with concentrations of prodigiosin, as a reducing agent, of 12.5 µg/ml and silver ion concentration of 1 mM. Measuremen
... Show MoreThe newly synthesized Schiff base ligand (E)-2-((2-phenylhydrazono)methyl)naphthalen-1-ol (phenyl hydrazine derivative), is allowed to react with each of the next mineral ion: Ni2+, Cu2+, Zn2+andCd2+successfully resulting to obtain new metal complexes with different geometric shape. The formation of Schiff base complexes and also the origin Schiff base is indicated using LC-Mass that manifest the obtained molar mass, FT-IR proved the occurrence of coordination through N of azobenzene and O of OH by observing the shifting in azomethines band and appearing of M-N and N-O bands. Moreover, we can also detect by such apparatus, the presence of aquatic water molecule inside the coordination sphere. UV-Vis spectra of all resultants reveale
... Show MoreA New Mannich base [N-(4-morpholinomethyl)-1,8-naphthalimide] (L), was synthesized and characterized by C.H.N analysis, FTIR, UV-Vis and 1HNMR spectral analysis. Metal ion complexes of (L) with Pt(IV), Rh(III), Ru(III) and Pd(II) ions were prepared and characterized by FT-IR, and UV-Vis spectroscopy, elemental analysis (C.H.N), flame atomic absorption techniques as well as magnetic susceptibility and conductivity measurements. The results showed that metal ion complexes for all complexes were found in [1:2] [M:L] ratio except for Pd(II) complex which was found in [1:1] [M:L] ratio. Hyperchem-8 program has been used to predict structural geometries of the (L) and it's complexes in gas phase. The electrostatic potential (EP) of the (L) was
... Show MoreIn the present study, synthesis of bis Schiff base [I, II] by reaction of one mole of terephthalaldehyde with two mole of 2-amino-5-mercapto-1,3,4-thiadiazole or 4-amino benzene thiol in the ethanol absolute, then compounds [I,II] were reacted with Na2CO3 of distilled H2O, then chloroacetic acid was added to yield compounds [III,IV]. O-chitosan derivatives [V,VI] were synthesized by reaction of chitosan with compounds [III,IV] in acidic media in distilled water according to the steps of Fischer. O–chitosan (grafted chitosan) [V,VI] was blended with synthetic polymer polyvinyl alcohol (PVA) to produce polymers [VII,VIII], then these polymers were blended with nano: Gold or Silver by u
... Show MorePolypyrrole/silver (PPy/Ag) nanocomposites was synthesized via a chemical oxidative method. The AFM analysis is performed to study the surface roughness, morphology and size distribution of the PPy particles and PPy-ag nanocomposites. The results indicated that as the concentration of Ag in the nanocomposite increases, the roughness also increases. The size of nanoparticles was also evaluated and found in the range of 15 nm to 125 nm. The PPy/Ag nanocomposites exhibited an effectiveness against Gram-negative Escherichia coli showing an inhibition zone of 4mm and displayed poor efficacy against Gram-positive Staphylococcus aureus. Based on given adequate antibacterial characteristics of PPy/Ag nanocomposites, it can be identified as
... Show MoreThe synthesis of conducting polyaniline (PANI) nanocomposites containing various concentrations of functionalized single-walled carbon nanotubes (f-SWCNT) were synthesized by in situ polymerization of aniline monomer. The morphological and electrical properties of pure PANI and PANI/SWCNT nanocomposites were examined by using Fourier transform- infrared spectroscopy (FTIR), and Atomic Force Microscopy (AFM) respectively. The FTIR shows the aniline monomers were polymerized on the surface of SWCNTs, depending on the -* electron interaction between aniline monomers and SWCNTs. AFM analysis showed increasing in the roughness with increasing SWCNT content. The AC, DC electrical conductivities of pure PANI and PANI/SWCNT nanocomposite h
... Show MoreNano-silver oxide thin films with high sensitivity for NH3 gas were deposited on glass substrates by the chemical bath deposition technique. The preparations were made under different values of pH and deposition time at 70áµ’ C, using silver nitrate AgNO3 and triethanolamine. XRD analysis showed that all thin films were
polycrystalline with several peaks of silver oxides such as Ag2O, AgO and Ag3O4, with an average crystallite size that ranged between 31.7 nm and 45.8 nm, depending on the deposition parameters. Atomic force microscope (AFM) technique illustrated that the films were homogenous with different surface roughness and the
grain size ranged between 55.69 nm and 86.23 nm. The UV-Vis spectrophotometer showed that the op
A new class of biologically active nanocomposites and modified polymers based on poly (vinyl alcohol) (PVA) with some organic compounds [II, IV, V and VI] were synthesized using silver nanoparticles (Ag-NPs). All compounds were synthesized using nucleophilic substitution interactions and characterized by FTIR, DSC and TGA. The biological activity of the modified polymers was evaluated against: gram (+) (staphylococcus aureus) and gram (-): (Es cherichia coli bacteria). Antimicrobial films are developed based on modified poly (vinyl alcohol) MPVA and Ag-NPs nanoparticles. The nanocomposites and modified polymers showed better antibacterial activities against Escherichia coli (Gram negative) than against Staphyloc
... Show More