Preferred Language
Articles
/
CRcyzY0BVTCNdQwCrRyx
Nearly Maximal Submodules
...Show More Authors

Preview PDF
Quick Preview PDF
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Semisecond Submodules
...Show More Authors

      Let  be a right module over a ring  with identity. The semisecond submodules are studied in this paper. A nonzero submodule  of   is called semisecond if    for each . More information and characterizations about this concept is provided in our work.

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2009
Journal Name
Baghdad Science Journal
Weak Essential Submodules
...Show More Authors

A non-zero submodule N of M is called essential if N L for each non-zero submodule L of M. And a non-zero submodule K of M is called semi-essential if K P for each non-zero prime submodule P of M. In this paper we investigate a class of submodules that lies between essential submodules and semi-essential submodules, we call these class of submodules weak essential submodules.

View Publication Preview PDF
Crossref
Publication Date
Tue Nov 13 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
WE-Prime Submodules and WE-Semi-Prime Submodules
...Show More Authors

"In this article, "we introduce the concept of a WE-Prime submodule", as a stronger form of a weakly prime submodule". "And as a "generalization of WE-Prime submodule", we introduce the concept of WE-Semi-Prime submodule, which is also a stronger form of a weakly semi-prime submodule". "Various basic properties of these two concepts are discussed. Furthermore, the relationships between "WE-Prime submodules and weakly prime submodules" and studied". "On the other hand the relation between "WE-Prime submodules and WE-Semi-Prime submodules" are consider". "Also" the relation of "WE-Sime-Prime submodules and weakly semi-prime submodules" are explained. Behind that, some characterizations of these concepts are investigated".

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
S-Coprime Submodules
...Show More Authors

  In this paper, we introduce and study the concept of S-coprime submodules, where a proper submodule N of an R-module M is called S-coprime submodule if M N is S-coprime Rmodule. Many properties about this concept are investigated.

View Publication Preview PDF
Publication Date
Tue Nov 13 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
WN-2-Absorbing Submodules And WNS-2-Absorbing Submodules
...Show More Authors

In''this"article, we"study",the"concept""of WN"-"2"-''Absorbing'''submodules and WNS''-''2''-''Absorbing"submodules as generalization of "weakly 2-absorbing and weakly semi 2-absorbing submodules respectively. We investigate some of basic properties, examples and characterizations of them. Also, prove, the class of WN-2-Absorbing "submodules is contained in the class of WNS-2-Absorbing "submodules. Moreover, many interesting results about these concepts, were proven.

View Publication Preview PDF
Crossref
Publication Date
Fri Mar 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Semi-Essential Submodules
...Show More Authors

Let R be a commutative ring with identity and let M be a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of semi-essential submodules which introduced by Ali S. Mijbass and Nada K. Abdullah, and we make simple changes to the definition relate with the zero submodule, so we say that a submodule N of an R-module M is called semi-essential, if whenever N ∩ P = (0), then P = (0) for each prime submodule P of M. Various properties of semi-essential submodules are considered.

View Publication Preview PDF
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximaitly Prime Submodules and Some Related Concepts
...Show More Authors

In this research note approximately prime submodules is defined as a new generalization of prime submodules of unitary modules over a commutative ring with identity. A proper submodule  of an -module  is called an approximaitly prime submodule of  (for short app-prime submodule), if when ever , where , , implies that either  or . So, an ideal  of a ring  is called app-prime ideal of  if   is an app-prime submodule of -module . Several basic properties, characterizations and examples of approximaitly prime submodules were given. Furthermore, the definition of approximaitly prime radical of submodules of modules were introduced, and some of it is properties were established.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Mar 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
á´ª-Prime Submodules
...Show More Authors

      Let R be a commutative ring with identity and M be an unitary R-module. Let (M) be the set of all submodules of M, and : (M)  (M)  {} be a function. We say that a proper submodule P of M is -prime if for each r  R and x  M, if rx  P, then either x  P + (P) or r M  P + (P) . Some of the properties of this concept will be investigated. Some characterizations of -prime submodules will be given, and we show that under some assumptions prime submodules and -prime submodules are coincide. 

View Publication Preview PDF
Publication Date
Tue Nov 13 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
For Some Results of Semisecond Submodules
...Show More Authors

  Let â„› be a commutative ring with unity and let ℬ be a unitary R-module. Let ℵ be a proper submodule of ℬ, ℵ is called semisecond submodule if for any r∈ℛ, r≠0, n∈Z+, either rnℵ=0 or rnℵ=rℵ.

In this work, we introduce the concept of semisecond submodule and confer numerous properties concerning with this notion. Also we study semisecond modules as a popularization of second modules, where an ℛ-module ℬ is called semisecond, if ℬ is semisecond submodul of ℬ.

View Publication Preview PDF
Crossref
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Almost and Strongly Almost Approximately Nearly Quasi Compactly Packed Modules
...Show More Authors

In this paper, we present the almost approximately nearly quasi compactly packed (submodules) modules as an application of the almost approximately nearly quasiprime submodule. We give some examples, remarks, and properties of this concept. Also, as the strong form of this concept, we introduce the strongly, almost approximately nearly quasi compactly packed (submodules) modules. Moreover, we present the definitions of almost approximately nearly quasiprime radical submodules and almost approximately nearly quasiprime radical submodules and give some basic properties of these concepts that will be needed in section four of this research. We study these two concepts extensively.

View Publication Preview PDF
Crossref