Preferred Language
Articles
/
CRcy-Y0BVTCNdQwCVSvO
Improved DDoS Detection Utilizing Deep Neural Networks and Feedforward Neural Networks as Autoencoder
...Show More Authors

Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybrid technique to recognize denial-of-service (DDoS) attacks that combine deep learning and feedforward neural networks as autoencoders. Two datasets were analyzed for the training and testing model, first statically and then iteratively. The auto-encoding model is constructed by stacking the input layer and hidden layer of self-encoding models’ layer by layer, with each self-encoding model using a hidden layer. To evaluate our model, we use a three-part data split (train, test, and validate) rather than the common two-part split (train and test). The resulting proposed model achieved a higher accuracy for the static dataset, where for ISCX-IDS-2012 dataset, accuracy reached a high of 99.35% in training, 99.3% in validation and 99.99% in precision, recall, and F1-score. for the UNSW2018 dataset, the accuracy reached a high of 99.95% in training, 0.99.94% in validation, and 99.99% in precision, recall, and F1-score. In addition, the model achieved great results with a dynamic dataset (using an emulator), reaching a high of 97.68% in accuracy.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Approach for Facial Image Detection System
...Show More Authors

HM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023

View Publication
Scopus (6)
Scopus
Publication Date
Sun Dec 01 2024
Journal Name
Al-khwarizmi Engineering Journal
Defect Detection Using Thermography Camera Techniques: A review
...Show More Authors

Individuals across different industries, including but not limited to agriculture, drones, pharmaceuticals and manufacturing, are increasingly using thermal cameras to achieve various safety and security goals. This widespread adoption is made possible by advancements in thermal imaging sensor technology. The current literature provides an in-depth exploration of thermography camera applications for detecting faults in sectors such as fire protection, manufacturing, aerospace, automotive, non-destructive testing and structural material industries. The current discussion builds on previous studies, emphasising the effectiveness of thermography cameras in distinguishing undetectable defects by the human eye. Various methods for defect

... Show More
View Publication
Crossref
Publication Date
Wed May 24 2023
Journal Name
2023 9th International Conference On Information Technology Trends (itt)
A Comparative Study of Unauthorized Drone Detection Techniques
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Tue Oct 16 2018
Journal Name
International Journal Of Pharmaceutical Quality Assurance
Isolation and Detection of Candida tropicalis from Aborted Placenta in Al-Najaf city/Iraq
...Show More Authors

Background: Candida tropicalis is one of the most causes of vulvovaginal candidiasis (VVC) in women. Systemic candidiasis and candidemia may also occur in pregnancies. Objective: This study was carried out to detect and isolate of this yeast from aborted placenta, which may cause severe complications such as spontaneous abortion. Materials and methods: Fresh aborted placenta were collected and washed by normal saline to remove the blood. Then, cut it into portions and place it in test tube containing 5 ml of normal saline. Finally, shake for 10 minutes, after that, cultured for microbial isolation. Isolation and detection were done by some conventional methods with Api candida and CHROMagar. Results: The results showed that four iso

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jun 10 2022
Journal Name
Eurasian Chemical Communications
Detection of lead and cadmium in types of chips from local markets in Baghdad
...Show More Authors

View Publication
Scopus (1)
Scopus
Publication Date
Tue Oct 08 2002
Journal Name
Iraqi Journal Of Laser
Laser Detection and Tracking System Using an Array of Photodiodes with Fuzzy Logic controller
...Show More Authors

In this work laser detection and tracking system (LDTS) is designed and implemented using a fuzzy logic controller (FLC). A 5 mW He-Ne laser system and an array of nine PN photodiodes are used in the detection system. The FLC is simulated using MATLAB package and the result is stored in a lock up table to use it in the real time operation of the system. The results give a good system response in the target detection and tracking in the real time operation.

View Publication Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
Iraqi Journal Of Biotechnology
Detection of E. coli and rotavirus in diarrhea among children under five years old‏
...Show More Authors

Publication Date
Sat Jun 30 2018
Journal Name
Iraqi Journal Of Medical Sciences
CLINICAL UTILITY OF URINARY ANTIGEN TEST AND MOLECULAR METHOD FOR DETECTION OF LEGIONELLA PNEUMOPHILA
...Show More Authors

Background: Legionella pneumophila (L. pneumophila) is gram-negative bacterium, which causes Legionnaires’ disease as well as Pontiac fever. Objective: To determine the frequency of Legionella pneumophila in pneumonic patients, to determine the clinical utility of diagnosing Legionella pneumonia by urinary antigen testing (LPUAT) in terms of sensitivity and specificity, to compares the results obtained from patients by urinary antigen test with q Real Time PCR (RT PCR) using serum samples and to determine the frequency of serogroup 1 and other serogroups of L. pneumophila. Methods: A total of 100 pneumonic patients (community acquired pneumonia) were enrolled in this study during a period between October 2016 to April 2017; 92 sam

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue May 05 2015
Journal Name
The 16th Science Conference/ College Of Basic Education.
Detection of Microbial and Chemical Contamination in Canned Meat Available in Baghdad Local Markets
...Show More Authors

Publication Date
Mon Sep 30 2024
Journal Name
Iraqi Journal Of Science
Molecular and Immunological Detection of Hepatitis C Virus in Patients with Chronic Renal Failure
...Show More Authors

Due to its association with hepatocellular carcinoma and being one of the ten most common malignancies worldwide, hepatitis C viral infection has become a severe public health concern. Therefore, establishing an accurate, reliable and sensitive diagnostic test for this infection is strongly advised. Real-time polymerase chain reaction (PCR) has been created to achieve this purpose. The current study was established to investigate the hepatitis C virus among Iraqi patients with chronic renal failure and to detect the virus immunologically by the fourth generation enzyme-linked immunosorbent assay technique and molecularly by real-time PCR. As a result, out of 50 patients with chronic renal failure undergoing dialysis, 39 patients tes

... Show More
View Publication
Scopus Crossref