Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybrid technique to recognize denial-of-service (DDoS) attacks that combine deep learning and feedforward neural networks as autoencoders. Two datasets were analyzed for the training and testing model, first statically and then iteratively. The auto-encoding model is constructed by stacking the input layer and hidden layer of self-encoding models’ layer by layer, with each self-encoding model using a hidden layer. To evaluate our model, we use a three-part data split (train, test, and validate) rather than the common two-part split (train and test). The resulting proposed model achieved a higher accuracy for the static dataset, where for ISCX-IDS-2012 dataset, accuracy reached a high of 99.35% in training, 99.3% in validation and 99.99% in precision, recall, and F1-score. for the UNSW2018 dataset, the accuracy reached a high of 99.95% in training, 0.99.94% in validation, and 99.99% in precision, recall, and F1-score. In addition, the model achieved great results with a dynamic dataset (using an emulator), reaching a high of 97.68% in accuracy.
In this work, novel copolymers of poly(adipic anhydride-co-mannitol) were synthesized by melting condensation polymerization of poly(adipic anhydride) with five percentages of mannitol sugar, 1 to 5 Wt.%. These copolymers were purified and then, characterized by FT-IR, which was proved that the cross-linking reaction was caused by nucleophilic attack of mannitol hydroxyl group to acidic anhydride groups of poly(adipic anhydride) backbone and new ester groups were formed and appeared. Also, modified organic-soluble chitosan, N-maleoyl-chitosan, were synthesized by grafting reaction of chitosan with maleic anhydride in DMF as solvent, and it was also purified and characterized by FT-IR. Biodegradation in vitro of the IPNs of poly(adipic anhyd
... Show MoreThis abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivota
... Show MoreThe chlorine concentration variation in Baghdad water networks was studied. The
chlorine data were collected from Mayoralty of Baghdad and Ministry of Environment
(MOE) for the networks for both sides of the city Karkh and Rasafa for (2008-2009). The
study of these data indicates that there are no systematic testing program .Classified GIS
maps showed that the areas far from the treatment plants have almost always low
chlorine concentration .This indicates that the problem of the low chlorine concentration
in the far areas is due to cracks of pipe along the conveyance path ,as expected. The area's
most frequently have low concentration are Al-sadir,Al-Kadhimya, and Al-Amiria . It
was found also that the chlorine c
Distributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks
... Show More