Preferred Language
Articles
/
CRcLZpIBVTCNdQwCjK8d
Singular Perturbation-Based Adaptive Integral Sliding Mode Control for Flexible Joint Robots
...Show More Authors

The flexible joint robot (FJR) typically experiences parametric variations, nonlinearities, underactuation, noise propagation, and external disturbances which seriously degrade the FJR tracking. This article proposes an adaptive integral sliding mode controller (AISMC) based on a singular perturbation method and two state observers for the FJR to achieve high performance. First, the underactuated FJR is modeled into two simple second-order fast and slow subsystems by using Olfati transformation and singular perturbation method, which handles underactuation while reducing noise amplification. Then, the AISMC is proposed to effectively accomplish the desired tracking performance, in which the integral sliding surface is designed to reduce chattering based on two-state observers with no requirements of the velocity and acceleration measurements in the FJR system. Furthermore, an adaptive laws for switching gains are proposed for both slow and fast subsystems in the FJR to remove the requirements of knowing the up-bound of the disturbances and uncertainties. The closed loop stability of not only slow and fast subsystems but also the overall FJR is proved using the Lyapunov theorem. Finally, the simulation and experimental results demonstrate the superiority of proposed control in terms of less tracking error, significant noise suppression, and strong robustness in comparison with existing controllers.

Scopus Clarivate Crossref
View Publication
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Design and Simulation of L1-Adaptive Controller for Position Control of DC Servomotor
...Show More Authors

This paper presents L1-adaptive controller for controlling uncertain parameters and time-varying unknown parameters to control the position of a DC servomotor. For the purpose of comparison, the effectiveness of L1-adaptive controller for position control of studied servomotor has been examined and compared with another adaptive controller; Model Reference Adaptive Controller (MRAC). Robustness of both L1-adaptive controller and model reference adaptive controller to different input reference signals and different structures of uncertainty were studied. Three different types of input signals are taken into account; ramp, step and sinusoidal. The L1-adaptive controller ensured uniformly bounded

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
An adaptive neural control methodology design for dynamics mobile robot
...Show More Authors

View Publication
Scopus (9)
Crossref (6)
Scopus Crossref
Publication Date
Fri May 31 2019
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Algorithms based Path Planning for Mobile Robots
...Show More Authors

In general, path-planning problem is one of most important task in the field of robotics. This paper describes the path-planning problem of mobile robot based on various metaheuristic algorithms. The suitable collision free path of a robot must satisfies certain optimization criteria such as feasibility, minimum path length, safety and smoothness and so on. In this research, various three approaches namely, PSO, Firefly and proposed hybrid FFCPSO are applied in static, known environment to solve the global path-planning problem in three cases. The first case used single mobile robot, the second case used three independent mobile robots and the third case applied three follow up mobile robot.  Simulation results, whi

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Tue Dec 12 2017
Journal Name
Al-khwarizmi Engineering Journal
Model Reference Adaptive Control based on a Self-Recurrent Wavelet Neural Network Utilizing Micro Artificial Immune Systems
...Show More Authors

Abstract 

This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Mar 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Nonlinear Adaptive Control of a pH Process
...Show More Authors

In this paper a nonlinear adaptive control method is presented for a pH process, which is difficult to control due to the nonlinear and uncertainties. A theoretical and experimental investigation was conducted of the dynamic behavior of neutralization process in a continuous stirred tank reactor (CSTR). The process control was implemented using different control strategies, velocity form of PI control and nonlinear adaptive control. Through simulation studies it has been shown that the estimated parameters are in good agreement with the actual values and that the proposed adaptive controller has excellent tracking and regulation performance.

View Publication Preview PDF
Publication Date
Fri Sep 18 2020
Journal Name
Hal Open Science
Adaptive Approximation Control of Robotic Manipulators: Centralized and Decentralized Control Algorithms
...Show More Authors

The regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matri

... Show More
View Publication
Publication Date
Mon Feb 01 2016
Journal Name
Ieee Transactions On Circuits And Systems Ii: Express Briefs
Adaptive Multibit Crosstalk-Aware Error Control Coding Scheme for On-Chip Communication
...Show More Authors

The presence of different noise sources and continuous increase in crosstalk in the deep submicrometer technology raised concerns for on-chip communication reliability, leading to the incorporation of crosstalk avoidance techniques in error control coding schemes. This brief proposes joint crosstalk avoidance with adaptive error control scheme to reduce the power consumption by providing appropriate communication resiliency based on runtime noise level. By switching between shielding and duplication as the crosstalk avoidance technique and between hybrid automatic repeat request and forward error correction as the error control policies, three modes of error resiliencies are provided. The results show that, in reduced mode, the scheme achie

... Show More
View Publication
Scopus (11)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Pure And Applied Algebra
Presentations for singular wreath products
...Show More Authors

View Publication
Scopus (8)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sun May 20 2018
Journal Name
Romansy 22 – Robot Design, Dynamics And Control
Decentralized Adaptive Partitioned Approximation Control of Robotic Manipulators
...Show More Authors

View Publication
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Human Face Recognition Based on Local Ternary Pattern and Singular Value Decomposition
...Show More Authors

There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref