The flexible joint robot (FJR) typically experiences parametric variations, nonlinearities, underactuation, noise propagation, and external disturbances which seriously degrade the FJR tracking. This article proposes an adaptive integral sliding mode controller (AISMC) based on a singular perturbation method and two state observers for the FJR to achieve high performance. First, the underactuated FJR is modeled into two simple second-order fast and slow subsystems by using Olfati transformation and singular perturbation method, which handles underactuation while reducing noise amplification. Then, the AISMC is proposed to effectively accomplish the desired tracking performance, in which the integral sliding surface is designed to reduce chattering based on two-state observers with no requirements of the velocity and acceleration measurements in the FJR system. Furthermore, an adaptive laws for switching gains are proposed for both slow and fast subsystems in the FJR to remove the requirements of knowing the up-bound of the disturbances and uncertainties. The closed loop stability of not only slow and fast subsystems but also the overall FJR is proved using the Lyapunov theorem. Finally, the simulation and experimental results demonstrate the superiority of proposed control in terms of less tracking error, significant noise suppression, and strong robustness in comparison with existing controllers.
The Population growth and decay issues are one of the most pressing issues in many sectors of study. These issues can be found in physics, chemistry, social science, biology, and zoology, among other subjects.
We introduced the solution for these problems in this paper by using the SEJI (Sadiq- Emad- Jinan) integral transform, which has some mathematical properties that we use in our solutions. We also presented the SEJI transform for some functions, followed by the inverse of the SEJI integral transform for these functions. After that, we demonstrate how to use the SEJI transform to tackle population growth and decay problems by presenting two applications that demonstrate how to use this transform to obtain solutions.
Fin
... Show MoreIn this paper, we present some numerical methods for solving systems of linear FredholmVolterra integral equations of the second kind. These methods namely are the Repeated Trapezoidal Method (RTM) and the Repeated Simpson's 1/3 Method (RSM). Also some numerical examples are presented to show the efficiency and the accuracy of the presented work.
In this paper, we use the repeated corrected Simpson's 3/8 quadrature method for obtaining the numerical solutions of Fredholm linear integral equations of the second kind. This method is more accurately than the repeated corrected Trapezoidal method and the repeated Simpson's 3/8 method. To illustrate the accuracy of this method, we give a numerical example
This paper presents designing an adaptive state feedback controller (ASFC) for a magnetic levitation system (MLS), which is an unstable system and has high nonlinearity and represents a challenging control problem. First, a nonadaptive state feedback controller (SFC) is designed by linearization about a selected equilibrium point and designing a SFC by pole-placement method to achieve maximum overshoot of 1.5% and settling time of 1s (5% criterion). When the operating point changes, the designed controller can no longer achieve the design specifications, since it is designed based on a linearization about a different operating point. This gives rise to utilizing the adaptive control scheme to parameterize the state feedback controll
... Show MoreData-driven models perform poorly on part-of-speech tagging problems with the square Hmong language, a low-resource corpus. This paper designs a weight evaluation function to reduce the influence of unknown words. It proposes an improved harmony search algorithm utilizing the roulette and local evaluation strategies for handling the square Hmong part-of-speech tagging problem. The experiment shows that the average accuracy of the proposed model is 6%, 8% more than HMM and BiLSTM-CRF models, respectively. Meanwhile, the average F1 of the proposed model is also 6%, 3% more than HMM and BiLSTM-CRF models, respectively.
Autonomous motion planning is important area of robotics research. This type of planning relieves human operator from tedious job of motion planning. This reduces the possibility of human error and increase efficiency of whole process.
This research presents a new algorithm to plan path for autonomous mobile robot based on image processing techniques by using wireless camera that provides the desired image for the unknown environment . The proposed algorithm is applied on this image to obtain a optimal path for the robot. It is based on the observation and analysis of the obstacles that lying in the straight path between the start and the goal point by detecting these obstacles, analyzing and studying their shapes, positions and
... Show MoreBackground : Knee flexors tightness has been documented in apparently healthy adults and in those with musculoskeletal problems, but the influence of age on the tightness has not been studied in Iraq. This study was therefore designed to determine the influence of age on knee flexors tightness in apparently healthy subjects.Methods: Knee flexors tightness was measured using the active knee extension test (AKET) in 200 apparently healthy male and female subjects, aged 13 to 59 years. The subjects were recruited into 5 age groups using the purposive sampling technique.Knee flexors tightness was compared across the age groups using one-way analysis ofvariance (ANOVA). The independent t-test was used to compare knee flexors tightness on both
... Show MoreThe research aims to explain the role of the flexible budget in assessing the feedback resulting from deviations by comparing the actual results with the planned performance in light of the economic crisis that the world witnessed during the spread of Corona disease. As most companies, including the Electronic Industries Company, face the problem of controlling production costs and are trying hard to reduce these costs to the lowest level starting from measuring these costs and allocating them and distributing them to products. This helps in controlling deviations and thus the flexible budget becomes a tool that helps in controlling elements Costs