Preferred Language
Articles
/
CIbm0YYBIXToZYALSrUv
Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins
...Show More Authors

This work evaluates the influence of combining twisted fins in a triple-tube heat exchanger utilised for latent heat thermal energy storage (LHTES) in three-dimensional numerical simulation and comparing the outcome with the cases of the straight fins and no fins. The phase change material (PCM) is in the annulus between the inner and the outer tube, these tubes include a cold fluid that flows in the counter current path, to solidify the PCM and release the heat storage energy. The performance of the unit was assessed based on the liquid fraction and temperature profiles as well as solidification and the energy storage rate. This study aims to find suitable and efficient fins number and the optimum values of the Re and the inlet temperature of the heat transfer fluid. The outcomes stated the benefits of using twisted fins related to those cases of straight fins and the no-fins. The impact of multi-twisted fins was also considered to detect their influences on the solidification process. The outcomes reveal that the operation of four twisted fins decreased the solidification time by 12.7% and 22.9% compared with four straight fins and the no-fins cases, respectively. Four twisted fins improved the discharging rate by 12.4% and 22.8% compared with the cases of four straight fins and no-fins, respectively. Besides, by reducing the fins’ number from six to four and two, the solidification time reduces by 11.9% and 25.6%, respectively. The current work shows the impacts of innovative designs of fins in the LHTES to produce novel inventions for commercialisation, besides saving the power grid.

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Apr 25 2013
Journal Name
Isprs International Journal Of Geo-information
Using Geometric Properties to Evaluate Possible Integration of Authoritative and Volunteered Geographic Information
...Show More Authors

The assessment of data quality from different sources can be considered as a key challenge in supporting effective geospatial data integration and promoting collaboration in mapping projects. This paper presents a methodology for assessing positional and shape quality for authoritative large-scale data, such as Ordnance Survey (OS) UK data and General Directorate for Survey (GDS) Iraq data, and Volunteered Geographic Information (VGI), such as OpenStreetMap (OSM) data, with the intention of assessing possible integration. It is based on the measurement of discrepancies among the datasets, addressing positional accuracy and shape fidelity, using standard procedures and also directional statistics. Line feature comparison has been und

... Show More
View Publication
Scopus (28)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2009
Journal Name
Tencon 2009 - 2009 Ieee Region 10 Conference
Optimizing the MPLS support for real time IPv6-Flows using MPLS-PHS approach
...Show More Authors

View Publication
Scopus (4)
Scopus Crossref
Publication Date
Sun May 01 2016
Journal Name
Iosr Journal Of Computer Engineering
Combining Arabic Nested Noun Compound and Collocation Extraction Using Linguistic and Statistical Approach
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Tue Aug 19 2025
Journal Name
Iraqi Journal Of Mechanical And Material Engineering
STUDY ON THE PARAMETER OPTIMIZATION INMAGNETIC ABRASIVE POLISHING FORBRASS CUZN33PLATE USING TAGUCHI METHOD
...Show More Authors

This paper describes a new finishing process using magnetic abrasives were newly made to finish effectively brass plate that is very difficult to be polished by the conventional machining processes. Taguchi experimental design method was adopted for evaluating the effect of the process parameters on the improvement of the surface roughness and hardness by the magnetic abrasive polishing. The process parameters are: the applied current to the inductor, the working gap between the workpiece and the inductor, the rotational speed and the volume of powder. The analysis of variance(ANOVA) was analyzed using statistical software to identify the optimal conditions for better surface roughness and hardness. Regressions models based on statistical m

... Show More
View Publication
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF
Publication Date
Tue Jul 06 2021
Journal Name
Journal Of Ecological Engineering
Chromium Elimination from Contaminated Soil by Electro kinetic Remediation, Using Garlic Peels Powder
...Show More Authors

View Publication
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Exploring the Factors Affecting the Elemental Cost Estimation with Relationship Analysis Using AHP
...Show More Authors

Cost estimation is considered one of the important tasks in the construction projects management. The precise estimation of the construction cost affect on the success and quality of a construction project. Elemental estimation is considered a very important stage to the project team because it represents one of the key project elements. It helps in formulating the basis to strategies and execution plans for construction and engineering.  Elemental estimation, which in the early stage, estimates the construction costs depending on  . minimum details of the project so that it gives an indication for the initial design stage of a project. This paper studies the factors that affect the elemental cost estimation as well as the rela

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 31 2013
Journal Name
Inventi Impact: Artificial Intelligence
SIMULATION OF IDENTIFICATION AND CONTROL OF SCARA ROBOT USING MODIFIED RECURRENT NEURAL NETWORKS
...Show More Authors

This paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett

... Show More
View Publication
Publication Date
Tue Aug 01 2023
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
End-to-End Speaker Profiling Using 1D CNN Architectures and Filter Bank Initialization
...Show More Authors

The automatic estimation of speaker characteristics, such as height, age, and gender, has various applications in forensics, surveillance, customer service, and many human-robot interaction applications. These applications are often required to produce a response promptly. This work proposes a novel approach to speaker profiling by combining filter bank initializations, such as continuous wavelets and gammatone filter banks, with one-dimensional (1D) convolutional neural networks (CNN) and residual blocks. The proposed end-to-end model goes from the raw waveform to an estimated height, age, and gender of the speaker by learning speaker representation directly from the audio signal without relying on handcrafted and pre-computed acou

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref