This paper studies the behavior of axially loaded RC columns which are confined with carbon fiber reinforced polymers’ sheet (CFRP) and steel jackets (SJ). The study is based on twelve axially loaded RC columns tested up to failure. It is divided into three schemes based on its strengthening type; each scheme has four columns. The main parameters in this study were the compressive strength of the concrete and steel reinforcement ratio. Furthermore, the results of the experimental test showed a substantial enhancement in the column's load-carrying capacity. When compared to the original columns, the CFRP sheet had a significant effect on improving the ductility of the column by increasing the axial deformation by about 59.2 to 95.7%. On the other hand, the SJ contributed mostly to the column load-carrying capacity, which increased the capacity of RC concrete from 75 to 107%; because of its composite action comparing with the CFRP sheet action in which unidirectional lateral confinement is provided. Both methods produced completely different failure modes. The columns strengthened with CFRP sheet failed by rupture occurring in the sheet fibers. The strengthened with SJ failed due to the buckling that occurred in the steel angles due to the direct contact with the head of the column, and crushing in the concrete has occurred.
The sintering behavior of Alumina was investigated by adding TiO2. The addition of TiO2 lowered the sintering temperature of the Alumina compared with those of pure Alumina. The result suggests that TiO2 acts as an activator for sintering of Alumina. Water absorption, apparent porosity and density were examined for both pure and TiO2 added to Alumina samples. The variations of sintering behavior were discussed in terms of shrinkage, porosity, water absorption and density. Thermal shock resistance was also examined. In term of this work, the way of improving the thermal shock resistance in oxide- based materials by adding reactive Titania powder to the Alumina samples. The laboratory results showed an improvement in thermal shock resistance
... Show MoreAbstract
In the present work, thermal diffusivity and heat capacity measurements have been investigated in temperature range between RT and 1473 K for different duplex stainless steel supplied by Outokumpu Stainless AB, Sweden. The purpose of this study is to get a reliable thermophysical data of these alloys and to study the effect of microstructure on the thermal diffusivity and heat capacity value. Results show the ferrite content in the duplex stainless steel increased with temperature at equilibrium state. On the other hand, ferrite content increased with increasing Cr/Ni ratio and there is no significant effect of ferrite content on the thermal diffusivity value at room temperature. Furthermore, the heat capacity of all sam
... Show MoreThis research Sheds highlights the procedural protections that must be enjoyed by the consumer in the face of the product, which is the protection of no less dangerous than the substantive protection of our obligations and duties delivered by the legislature upon the product of consumer interest, what is the benefit of the right if the access road to him complicated, so know The consumer has a right to the face of the product, but leaves the claim, either to ignorance For access to this right either to the difficulty of connecting to him.
That this research modest attempt we tried through which to focus on the way to the consumer behavior of arrived right, as we tried to highlight the weaknesses and the complexity of the procedure to
In this study, six square reinforced concrete flat plates with dimensions of (1500×1500×100) mm were tested under a concentrated load applied on a column located at the center of the slabs. One of these slabs was the control specimen, whereas, in the others, steel angles (steel collars) were used, fixed at the connection region between the slab and the column to investigate the effect of the presence of these collars on punching shear strength. Five thicknesses were used (4, 5, 6, 8, 10mm) with constant legs of angles (75×75) mm of the steel collars to investigate the effects on the punching shear resistance with respect to the control slab. The results of the experimental study show that the punching shear resistance increased b
... Show MoreHigh performance self-consolidating concrete HP-SCC is one of the most complex types of concrete which have the capacity to consolidated under its own weight, have excellent homogeneity and high durability. This study aims to focus on the possibility of using industrial by-products like Silica fumes SF in the preparation of HP-SCC enhanced with discrete steel fibers (DSF) and monofilament polypropylene fibers (PPF). From experimental results, it was found that using DSF with volume fraction of 0.50 %; a highly improvements were gained in the mechanical properties of HP-SCC. The compressive strength, splitting tensile strength, flexural strength and elastic modulus improved about 65.7 %, 70.5 %, 41.7 % and 80.3 % at 28 days age, respectively
... Show MoreRutting is mainly referring to pavement permanent deformation, it is a major problem for flexible pavement and it is a complicated process and highly observed along with many segments of asphalt pavement in Iraq. The occurrence of this defect is related to several variables such as elevated temperatures and high wheel loads. Studying effective methods to reduce rutting distress is of great significance for providing a safe and along-life road. The asphalt mixture used to be modified by adding different types of additives. The addition of additives typically excesses stiffness, improves temperature susceptibility, and reduces moisture sensitivity. For this work, steel fibres have been used for modifying asphalt mixture as they incorp
... Show MoreThe present work is concerned with the investigation of the behavior and ultimate capacity of axially loaded reinforced concrete columns in presence of transverse openings under axial load plus uniaxial bending. The experimental program includes testing of twenty reinforced concrete columns (150 × 150 × 700 mm) under concentric and eccentric load. Parameters considered include opening size, load eccentricity and influence of the direction of load eccentricity with respect to the longitudinal axis of the opening. Experimental results are discussed based on load – lateral mid height deflection curves, load – longitudinal shortening behavior, ultimate load and failure modes. It is found that when the direction of load
... Show More