This study aims to test ceramic waste's capacity to remove nickel from aqueous solutions through adsorption. Ceramic wastes were collected from the Refractories Manufacturing Plant in Ramadi. Through a series of lab tests, the reaction time (5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 minutes, and Ni concentrations (20, 40, 60, and 80) were tested using ceramic wastes with a solid to liquid ratio of 2g/30ml. At a temperature of 30ºC, the pH, total dissolved solids (TDS), and electrical conductivity (EC) were all measured. The equilibrium time was set at 30 min. Thereafter, the sorption (%) somewhat increased positively with the Ni concentration. Freundlich's equation showed that the adsorption intensity is 1.1827 and the Freundlich constant is 58.15, Langmuir Equation showed the sorption capacity is 1.8779, and the sorption of Ni fit with the Langmuir and Freundlich equations. It was clarified how ceramic waste material can reduce the Ni concentrations from aqueous solutions protecting the environment.
The removal of direct blue 71 dye from a prepared wastewater was studied employing batch electrocoagulation (EC) cell. The electrodes of aluminum were used. The influence of process variables which include initial pH (2.0-12.0), wastewater conductivity (0.8 -12.57) mS/cm , initial dye concentration (30 -210) mg/L, electrolysis time (3-12) min, current density (10-50) mA/cm2 were studied in order to maximize the color removal from wastewater. Experimental results showed that the color removal yield increases with increasing pH until pH 6.0 after that it decreased with increasing pH. The color removal increased with increasing current density, wastewater conductivity, electrolysis time, and decreased with increasing the concen
... Show MoreIn the present work, it had been measured the concentration of radon gas (CRn) for (10) samples of cement used in constructions before and after painting them using enamel paint, purchased from the local markets, to see the extent of its ability to reduce emissions of Rn-222 in the air. These samples were obtained from different sources available in the local markets in Baghdad and other provinces. The measurements were done by the American-made detector (RAD7). The results showed that the highest CRn in the air emitted from cement samples after coating was in the cement sample (Iranian origin) where the concentration was (58.27 Bq/m3) while the lowest CRn was found in building material samples
... Show MoreThe kinetic of atropine pertraction from seeds of Datura Metel Linn plant was studied. Diisopropyl ether, n-hexane and n-heptane were used as membranes for atropine recovery. The effect of speed of agitation and time in the range of 200-300 rpm and 0-3.5h, respectively were studied using the proposed membranes. The pertraction experiments were carried outs in a batch laboratory unit. The liquid-liquid pertraction was found to be very suitable for atropine recovery from its liquid extracts of Datura Metel seeds. A high purity (94-96%) can be obtained in the receiver phase. The pertraction process was found to be very selective for atropine recovery with diisopropyl ether membrane. As the speed of agitation increases the efficiency of pertrac
... Show MoreThis paper aims to find new analytical closed-forms to the solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
Many of the proposed methods introduce the perforated fin with the straight direction to improve the thermal performance of the heat sink. The innovative form of the perforated fin (with inclination angles) was considered. Present rectangular pin fins consist of elliptical perforations with two models and two cases. The signum function is used for modeling the opposite and the mutable approach of the heat transfer area. To find the general solution, the degenerate hypergeometric equation was used as a new derivative method and then solved by Kummer's series. Two validation methods (previous work and Ansys 16.0‐Steady State Thermal) are considered. The strong agreement of the validation results (0.3