This study aims to test ceramic waste's capacity to remove nickel from aqueous solutions through adsorption. Ceramic wastes were collected from the Refractories Manufacturing Plant in Ramadi. Through a series of lab tests, the reaction time (5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 minutes, and Ni concentrations (20, 40, 60, and 80) were tested using ceramic wastes with a solid to liquid ratio of 2g/30ml. At a temperature of 30ºC, the pH, total dissolved solids (TDS), and electrical conductivity (EC) were all measured. The equilibrium time was set at 30 min. Thereafter, the sorption (%) somewhat increased positively with the Ni concentration. Freundlich's equation showed that the adsorption intensity is 1.1827 and the Freundlich constant is 58.15, Langmuir Equation showed the sorption capacity is 1.8779, and the sorption of Ni fit with the Langmuir and Freundlich equations. It was clarified how ceramic waste material can reduce the Ni concentrations from aqueous solutions protecting the environment.
Activated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 – 9.) , agitation time (0 – 120)min and adsorbent dose (2 – 10) gm.
The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of sulfate (22% - 38%) at (PH=7) in the isotherm experiment increased with adsorbent mass increasing. The maximum removal value of sulfate at different pH experiments is (43%) at pH=7.
In the present study waste aluminium cans were recycled and converted to produce alumina catalyst. These cans contain more than 98% aluminum oxide in their structure and were successfully synthesized to produce nano sized gamma alumina under mild conditions. A comprehensive study was carried out in order to examine the effect of several important parameters on maximum yield of alumina that can be produced. These parameters were reactants mole ratios (1.5, 1.5, 2, 3, 4 and 5), sodium hydroxide concentrations (10, 20, 30, 40, 50 and 55%) and weights of aluminum cans (2, 4, 6, 8 and 10 g). The compositions of alumina solution were determined by Atomic absorption spectroscopy (AAS); and maximum yield of alumina solution was 96.3% obtain
... Show MoreAnimal fats are a good, promising and ethical alternative source for biodiesel production, but they need more complex treatments than vegetable oils. Iraqi butchery plants waste fats (sheep fat) which are suggested as feedstock to produce biodiesel. This type of fat contains a large quantity of free fatty acids (FFAs) (acid number 49.13 mg KOH/g of fat). The direct transesterification of such fats produce high amount of soap instead of desired biodiesel, so a pre-treatment step (to reduce FFAs) is necessary before transesterification. This step was done by esterification of the free fatty acids in the fat by adding ethanol and using 1% acid catalyst (H2SO4) for 30 minutes. The results showed that the acid number of sheep fat after pre-tr
... Show MoreThe study aimed to purification of acid phosphatase (ACP) from sera of obesetype 2 diabetes mellitus patients, this study included from thirty T2DM patients and thirty control, purification process was done with several steps included precipitation with inorganic salt (NH4 ) 2SO4 30%-80%, dialysis, ion exchange chromatography by DEAE sepharose anion column and size exclusion chromatography by Sepharose 6B.ACP, BMI, FBS, HbA1c, Lipid profile, Urea, Creatinie, Insuline, Homa-IR were determined. Results showed the precipitate and concentrated protein appeared four peaks in ion exchange column. ACP located in the first and second peak with purification fold (21.1), (37.2) yield of enzyme and specific activity (173.3) IU/ml, which obtained a si
... Show More: Partial purification of phosphoenolpyruvate carboxykinase (PEPCK) from type 2 diabetic patients sera take place using some purification steps such as participation with ammonium sulphate (55-80%) and filtered through dialysis, then ion exchange chromatography by DEAE sepharose anion column, gel filtration chromatography by sephadex G-100 column. In ion exchange step, there are four peak are obtained, the highest enzyme activity obtained by (0.4 M Nacl) with purification fold (2.18), yield (44.3) of enzyme and specific activity (13.5) mg/ng, which obtained a single peak by gel filtration chromatography, the degree of purification (5.34) fold, yield of enzyme (20%) with specific activity (33.109mg/ng). The purified enzyme had an optimum tem
... Show MoreThe growing demand for sustainable and high-performance asphalt binders has prompted the exploration of waste-derived modifiers. This study investigates the performance enhancement of Natural Asphalt (NA) using Sugarcane Molasses (SM) and Waste Engine Oil (WEO). The modified blends were prepared by partially replacing 50 % NA with varying proportions of SM and WEO ranging from 10 % to 40 % of the total weight of NA. Comprehensive testing was conducted, including penetration, softening point, ductility, viscosity, Bending Beam Rheometer (BBR), Multiple Stress Creep Recovery (MSCR), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM). The results demonstrated that
... Show MoreProblem of water scarcity is becoming common in many parts of the world. Thus to overcome this problem proper management of water and an efficient irrigation systems are needed. Irrigation with buried vertical ceramic pipe is known as a very effective in management of irrigation water. The two- dimensional transient flow of water from a buried vertical ceramic pipe through homogenous porous media is simulated numerically using the software HYDRUS/2D to predict empirical formulas that describe the predicted results accurately. Different values of pipe lengths and hydraulic conductivity were selected. In addition, different values of initial volumetric soil water content were assumed in this simulation a
... Show MoreThe approach of green synthesis of bio-sorbent has become simple alternatives to chemical synths as they use for example plant extracts, plus green synthesis outperforms chemical methods because it is environmentally friendly besides has wide applications in environmental remediation. This paper investigates the removal of ciprofloxacin (CIP) using green tea nano zero-valent iron (GT-NZVI) in an aqueous solution. The synthesized GT-NZVI was categorized using SEM, AFM, BET, FTIR, and Zeta potentials techniques. The spherical nanoparticles were found to be nano zero-valent, with an average size of 85 nm and a surface area of 2.19m2/g. The results showed that the removal efficiency of ciprofloxacin depends on the initial pH (2.5-10),
... Show MoreModified bentonite has been used as effective sorbent material for the removal of acidic dye (methyl orange) from aqueous solution in batch system. The natural bentonite has been modified using cationic surfactant (cetyltrimethyl ammonium bromide) in order to obtain an efficient sorbent through converting the properties of bentonite from hydrophilic to organophilic. The characteristics of the natural and modified bentonite were examined through several analyses such as Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Surface area. The batch study was provided the maximum dye removal efficiency of 88.75 % with a sorption capacity of 555.56 mg/g at specified conditions (150 min, pH= 2, 250 rpm, and 0.
... Show More