Preferred Language
Articles
/
CBce-Y8BVTCNdQwCeIJK
Approximate Solution of Emden-Fowler Equation Using the Galerkin Method

Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Numerical Solution of Linear Fractional Differential Equation with Delay Through Finite Difference Method

This article addresses a new numerical method to find a numerical solution of the linear delay differential equation of fractional order , the fractional derivatives described in the Caputo sense. The new approach is to approximating second and third derivatives. A backward finite difference method is used. Besides, the composite Trapezoidal rule is used in the Caputo definition to match the integral term. The accuracy and convergence of the prescribed technique are explained. The results  are shown through numerical examples.

 

Scopus (5)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jun 03 2012
Journal Name
Baghdad Science Journal
Approximate Solution of Some Classes of Integral Equations Using Bernstein Polynomials of Two-Variables

The research aims to find approximate solutions for two dimensions Fredholm linear integral equation. Using the two-variables of the Bernstein polynomials we find a solution to the approximate linear integral equation of the type two dimensions. Two examples have been discussed in detail.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Using Semi-Analytic Technique for Solving Lane Emden Equations

This paper propose the semi - analytic technique using two point osculatory interpolation to construct polynomial solution for solving some well-known classes of Lane-Emden type equations which are linear ordinary differential equations, and disusse the behavior of the solution in the neighborhood of the singular points along with its numerical approximation. Many examples are presented to demonstrate the applicability and efficiency of the methods. Finally , we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.

View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Numerical Solution for Linear Fredholm Integro-Differential Equation Using Touchard Polynomials

A new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented method was given and the applicability was proved by some numerical examples. The results obtained in this method are compared with other known results.

 

Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Numerical Solution of Fractional Volterra-Fredholm Integro-Differential Equation Using Lagrange Polynomials

In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth

... Show More
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
The Galerkin-Implicit Method for Solving Nonlinear Variable Coefficients Hyperbolic Boundary Value Problem

This paper has the interest of finding the approximate solution (APPS) of a nonlinear variable coefficients hyperbolic boundary value problem (NOLVCHBVP).  The given boundary value problem is written in its discrete weak form (WEFM) and proved  have a unique solution, which is obtained via the mixed Galerkin finite element with implicit method that reduces the problem to solve the Galerkin nonlinear algebraic system  (GNAS). In this part, the predictor and the corrector techniques (PT and CT, respectively) are proved at first convergence and then are used to transform  the obtained GNAS to a linear GLAS . Then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are stud

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Oct 28 2020
Journal Name
Iraqi Journal Of Science
Approximate Solutions for Systems of Volterra Integro-differential Equations Using Laplace –Adomian Method

Some modified techniques are used in this article in order to have approximate solutions for systems of Volterra integro-differential equations. The suggested techniques are the so called Laplace-Adomian decomposition method and Laplace iterative method. The proposed methods are robust and accurate as can be seen from the given illustrative examples and from the comparison that are made with the exact solution.

Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Mar 01 2009
Journal Name
The Third International Conference Of The College Of Science –university Of Baghdad
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Solving Fractional Damped Burgers' Equation Approximately by Using The Sumudu Transform (ST) Method

       In this work, the fractional damped Burger's equation (FDBE) formula    = 0,

Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Mar 18 2020
Journal Name
Baghdad Science Journal
Solving Linear Volterra – Fredholm Integral Equation of the Second Type Using Linear Programming Method

In this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree  and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those

... Show More
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF