Preferred Language
Articles
/
CBcXEZIBVTCNdQwC6J4j
An Integrated Grasshopper Optimization Algorithm with Artificial Neural Network for Trusted Nodes Classification Problem
...Show More Authors

Wireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classification approach, hence strengthening the safety of such networks. Feature extraction process is done by using Linear Regression-Based Principal Component Analysis (LR-PCA). The test results demonstrated that the proposed IGO-ANN method attains the greatest performance in terms of accuracy, end to end delay and packet delivery ratio regarding trusted WBAN nodes classification than certain existing methods.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
A comparison among Different Methods for Estimating Regression Parameters with Autocorrelation Problem under Exponentially Distributed Error
...Show More Authors

Multiple linear regressions are concerned with studying and analyzing the relationship between the dependent variable and a set of explanatory variables. From this relationship the values of variables are predicted. In this paper the multiple linear regression model and three covariates were studied in the presence of the problem of auto-correlation of errors when the random error distributed the distribution of exponential. Three methods were compared (general least squares, M robust, and Laplace robust method). We have employed the simulation studies and calculated the statistical standard mean squares error with sample sizes (15, 30, 60, 100). Further we applied the best method on the real experiment data representing the varieties of

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Thu Jan 27 2022
Journal Name
Nanomaterials
Improving the Melting Duration of a PV/PCM System Integrated with Different Metal Foam Configurations for Thermal Energy Management
...Show More Authors

The melting duration in the photovoltaic/phase-change material (PV/PCM) system is a crucial parameter for thermal energy management such that its improvement can realize better energy management in respect to thermal storage capabilities, thermal conditions, and the lifespan of PV modules. An innovative and efficient technique for improving the melting duration is the inclusion of an exterior metal foam layer in the PV/PCM system. For detailed investigations of utilizing different metal foam configurations in terms of their convective heat transfer coefficients, the present paper proposes a newly developed mathematical model for the PV/PCM–metal foam assembly that can readily be implemented with a wide range of operating condition

... Show More
View Publication
Scopus (31)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Thu Nov 17 2016
Journal Name
Plos One
Efficient and Stable Routing Algorithm Based on User Mobility and Node Density in Urban Vehicular Network
...Show More Authors

Vehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destina

... Show More
View Publication Preview PDF
Scopus (35)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Tue Jun 30 2015
Journal Name
International Journal Of Computer Techniques
Multifractal-Based Features for Medical Images Classification
...Show More Authors

This paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4

... Show More
Preview PDF
Publication Date
Fri Mar 01 2024
Journal Name
International Journal Of Medical Informatics
An artificial intelligence approach to predict infants’ health status at birth
...Show More Authors

View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Optimization and Prediction of Process Parameters in SPIF that Affecting on Surface Quality Using Simulated Annealing Algorithm
...Show More Authors

Incremental sheet metal forming is a modern technique of sheet metal forming in which a uniform sheet is locally deformed during the progressive action of a forming tool. The tool movement is governed by a CNC milling machine. The tool locally deforms by this way the sheet with pure deformation stretching. In SPIF process, the research is concentrate on the development of predict models for estimate the product quality. Using simulated annealing algorithm (SAA), Surface quality in SPIF has been modeled. In the development of this predictive model, spindle speed, feed rate and step depth have been considered as model parameters. Maximum peak height (Rz) and Arithmetic mean surface roughness (Ra) are used as response parameter to assess th

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Eastern-european Journal Of Enterprise Technologies
Experimental investigation and modelling of residual stresses in face milling of Al-6061-T3 using neural network
...Show More Authors

Milling process is a common machining operation that is used in the manufacturing of complex surfaces. Machining-induced residual stresses (RS) have a great impact on the performance of machined components and the surface quality in face milling operations with parameter cutting. The properties of engineering material as well as structural components, specifically fatigue life, deformation, impact resistance, corrosion resistance, and brittle fracture, can all be significantly influenced by residual stresses. Accordingly, controlling the distribution of residual stresses is indeed important to protect the piece and avoid failure. Most of the previous works inspected the material properties, tool parameters, or cutting parameters, bu

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Mon Jul 31 2017
Journal Name
Journal Of Engineering
Rigid Trunk Sewer Deterioration Prediction Models using Multiple Discriminant and Neural Network Models in Baghdad City, Iraq
...Show More Authors

View Publication Preview PDF
Publication Date
Tue Aug 01 2017
Journal Name
Journal Of Engineering
Rigid trunk sewer deterioration prediction models using multiple discriminant and neural network models in Baghdad city, Iraq
...Show More Authors

The deterioration of buried sewers during their lifetime can be affected by several factors leading to bad performance and can damage the infrastructure similar to other engineering structures. The Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural deterioration caused by sewer collapses due to sewer specifications and the surrounding soil characteristics and the groundwater level. The main objective of this research is to develop deterioration models, which are used to predict changes in sewer condition that can provide assessment tools for determining the serviceability of sewer networks in Baghdad city. Two deterioration models were developed and tested using statistical software SPSS, the

... Show More
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
SDN-RA: An Optimized Reschedule Algorithm of SDN Load Balancer for Data Center Networks Based on QoS
...Show More Authors
Abstract<p>With the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch</p> ... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref