Preferred Language
Articles
/
CBcXEZIBVTCNdQwC6J4j
An Integrated Grasshopper Optimization Algorithm with Artificial Neural Network for Trusted Nodes Classification Problem
...Show More Authors

Wireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classification approach, hence strengthening the safety of such networks. Feature extraction process is done by using Linear Regression-Based Principal Component Analysis (LR-PCA). The test results demonstrated that the proposed IGO-ANN method attains the greatest performance in terms of accuracy, end to end delay and packet delivery ratio regarding trusted WBAN nodes classification than certain existing methods.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Aug 01 2016
Journal Name
Ieee Transactions On Neural Systems And Rehabilitation Engineering
Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering
...Show More Authors

View Publication
Scopus (140)
Crossref (136)
Scopus Clarivate Crossref
Publication Date
Wed Apr 01 2020
Journal Name
Journal Of Physics: Conference Series
An Integrated Model of The Relation Between E-Service Quality and User Satisfaction in IHL
...Show More Authors
Abstract<p>Quality of e-service is one of the critical factors that decide the success or failure of organizations. It may increase competitive advantages as well as enhance the relationships with the customers. Achieving high e-service quality and user satisfaction are challenging since they depend fundamentally on user perception and expectation which can be tricky at times. To date, there is no agreement as to what service quality is, and how it should be measured, whether it is a function of statistical measures of quality including physical defects or managerial judgment, or it is a function of customer perception about the services. This paper deep-dived the quality of e-services offered b</p> ... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Fri Jul 26 2019
Journal Name
Dental Materials Journal
Semi-interpenetrating network composites reinforced with Kevlar fibers for dental post fabrication
...Show More Authors

View Publication
Scopus (15)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Intelligent Automation &amp; Soft Computing
A Novel Classification Method with Cubic Spline Interpolation
...Show More Authors

View Publication
Scopus (9)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sun Feb 10 2019
Journal Name
Journal Of The College Of Education For Women
Ciphered Text Hiding in an Image using RSA algorithm
...Show More Authors

In this paper, a method for hiding cipher text in an image file is introduced . The
proposed method is to hide the cipher text message in the frequency domain of the image.
This method contained two phases: the first is embedding phase and the second is extraction
phase. In the embedding phase the image is transformed from time domain to frequency
domain using discrete wavelet decomposition technique (Haar). The text message encrypted
using RSA algorithm; then Least Significant Bit (LSB) algorithm used to hide secret message
in high frequency. The proposed method is tested in different images and showed success in
hiding information according to the Peak Signal to Noise Ratio (PSNR) measure of the the
original ima

... Show More
View Publication Preview PDF
Publication Date
Wed Oct 09 2024
Journal Name
Engineering, Technology &amp; Applied Science Research
Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter Optimization
...Show More Authors

The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Apr 02 2024
Journal Name
Engineering, Technology &amp; Applied Science Research
Two Proposed Models for Face Recognition: Achieving High Accuracy and Speed with Artificial Intelligence
...Show More Authors

In light of the development in computer science and modern technologies, the impersonation crime rate has increased. Consequently, face recognition technology and biometric systems have been employed for security purposes in a variety of applications including human-computer interaction, surveillance systems, etc. Building an advanced sophisticated model to tackle impersonation-related crimes is essential. This study proposes classification Machine Learning (ML) and Deep Learning (DL) models, utilizing Viola-Jones, Linear Discriminant Analysis (LDA), Mutual Information (MI), and Analysis of Variance (ANOVA) techniques. The two proposed facial classification systems are J48 with LDA feature extraction method as input, and a one-dimen

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Sep 30 2016
Journal Name
Al-khwarizmi Engineering Journal
Modeling the removal of Cadmium Ions from Aqueous Solutions onto Olive Pips Using Neural Network Technique
...Show More Authors

The uptake of Cd(II) ions from simulated wastewater onto olive pips was modeled using artificial neural network (ANN) which consisted of three layers. Based on 112 batch experiments, the effect of contact time (10-240 min), initial pH (2-6), initial concentration (25-250 mg/l), biosorbent dosage (0.05-2 g/100 ml), agitation speed (0-250 rpm) and temperature (20-60ºC) were studied. The maximum uptake (=92 %) of Cd(II) was achieved at optimum parameters of 60 min, 6, 50 mg/l, 1 g/100 ml, 250 rpm and 25ºC respectively.

Tangent sigmoid and linear transfer functions of ANN for hidden and output layers respectively with 7 neurons were sufficient to present good predictions for cadmium removal efficiency with coefficient of correlatio

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 01 2024
Journal Name
International Journal Of Medical Informatics
An artificial intelligence approach to predict infants’ health status at birth
...Show More Authors

View Publication
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Mar 31 2022
Journal Name
Iraqi Geological Journal
Development of New Models to Determine the Rheological Parameters of Water-Based Drilling Fluid using Artificial Neural Networks
...Show More Authors

It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological

... Show More
Crossref